

Examens Blancs

2éme Bac SM

Prof B.LOUKILIA

Bouazzaloukilia@gmail.com

Nr whatsapp 0674631401

Examen blanc 1 2éme BAC S.M

Durée: 4h

0.5

0.5

0.25

0.5

0.5

0.5

Année scolaire 2019/2020

Préparation pour le national 2020

EXERCICE 1: (3.5 points)

Soit m un nombre complexe non réel $(m \in \mathbb{C} - \mathbb{R})$

I- On considère dans $\mathbb C$, l'équation d'inconnue z définie par :

$$(E)$$
: $z^2-(1+i)(1+m)z+2im=0$

0.25 1-a) Montrer que le discriminant de l'équation (E) est non nul.

b) Déterminer z_1 et z_2 , les deux solutions de l'équation (E)

2- On suppose dans cette question que $m = e^{i\theta}$ avec $0 < \theta < \pi$

a) Déterminer le module et un argument de $z_1 + z_2$

b) Montrer que si $z_1 z_2 \in \mathbb{R}$ alors $z_1 + z_2 = 2i$

II- Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$

On considère les points suivants :

A le point d'affixe a=1+i, B le point d'affixe b=(1+i)m, C le point d'affixe

c=1-i, D l'image du point B par la rotation de centre O et d'angle $\frac{\pi}{2}$ et Ω le milieu du segment [CD].

1- a) Montrer que l'affixe du point Ω est $\omega = \frac{(1-i)(1-m)}{2}$

0.25 b) Calculer $\frac{b-a}{a}$

c) En déduire que $(O\Omega) \perp (AB)$ et que $AB = 2O\Omega$

2- La droite $(O\Omega)$ coupe la droite (AB) au point H d'affixe h

a) Montrer que $\frac{h-a}{h-a}$ est un réel et que $\frac{h}{h-a}$ est un imaginaire pur.

0.25 b) En déduire h en fonction de m

2éme BAC S.M

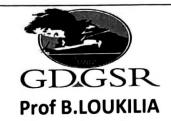
Durée: 4h

0.5

0.5

0.5

0.5


0.5

0.5

0.5

Année scolaire 2019/2020

Préparation pour le national 2020

EXERCICE2: (3 points)

On admet que 2969 (l'année amazighe actuelle) est un nombre premier.

Soient n et m deux entiers naturels vérifiant : $n^8 + m^8 \equiv 0$ [2969]

1- On suppose dans cette question que 2969 ne divise pas n

a) En utilisant le théorème de BEZOUT, montrer que : $(\exists u \in \mathbb{Z})$; $u \times n \equiv 1$ [2969]

b) En déduire que : $(u \times m)^8 = -1 [2969]$ et que $(u \times m)^{2968} = -1 [2969]$

(On remarque que : $2968 = 8 \times 371$)

0.5 c) Montrer que 2969 ne divise pas $u \times m$

d) En déduire qu'on a aussi $(u \times m)^{2968} \equiv 1 [2969]$

2-a) En utilisant les résultats précédents, montrer que 2969 divise n

b) Montrer que : $n^8 + m^8 \equiv 0$ [2969] $\Leftrightarrow n \equiv 0$ [2969] et $m \equiv 0$ [2969]

EXERCICE 3: (10 points)

PARTIE I: On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x \left(e^{-x} + \frac{1}{2}x - 1\right)$

et on note (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

0.5 1- Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$

0.5 2- a) Montrer que f est dérivable sur \mathbb{R} et que : $(\forall x \in \mathbb{R})$; $f'(x) = 4(e^{-x} - 1)(1 - x)$

0.75 b) Etudier les variations de $f \operatorname{sur} \mathbb{R}$, puis donner son tableau de variations.

c) Montrer qu'il existe un unique réel α dans l'intervalle $\frac{3}{2}$, 2 tel que $f(\alpha) = 0$

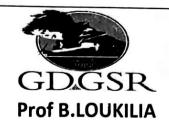
(On prendra $e^{\frac{3}{2}} = 4.5$)

0.25 d) Vérifier que : $e^{-\alpha} = 1 - \frac{\alpha}{2}$

3-a) En appliquant le théorème de ROLLE à la fonction f', montrer qu'il existe un réel x_0 de

l'intervalle]0,1[tel que : $f''(x_0) = 0$

0.5 b) En appliquant le théorème des accroissements finis à la fonction f", montrer que, pour tout


réel x différent de x_0 de l'intervalle [0,1], on a : $\frac{f''(x)}{x-x_0} > 0$

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

0.25 c) En déduire que $I(x_0, f(x_0))$ est un point d'inflexion de la courbe (C)

0.5 4-a) Etudier les branches infinies de la courbe (C)

0.5 b) Représenter graphiquement la courbe (C) dans le repère $(O; \vec{i}, \vec{j})$

(On prendra : $\|\vec{i}\| = \|\vec{j}\| = 1cm$, f(1) = -0.5 et il n'est pas demandé de représenter le point I)

0.25 | 5-a) Vérifier que : $(\forall x \in]-\infty, \alpha]$; $f(x) \le 0$

0.75 b) Montrer que : $\int_{0}^{\alpha} f(x) dx = \frac{2}{3} \alpha (\alpha^{2} - 3)$, en déduire que : $\frac{3}{2} < \alpha \le \sqrt{3}$

0.5 c) Calculer en fonction de α , en cm^2 , l'aire du domaine plan limité par la courbe (C) et les droites d'équations respectives : y = 0, x = 0 et $x = \alpha$

PARTIE II : On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 < \alpha$$
 et $(\forall n \in \mathbb{N})$; $u_{n+1} = f(u_n) + u_n$

0.5 | 1-a) Montrer par récurrence que : $(\forall n \in \mathbb{N})$ $u_n < \alpha$ (utiliser la question 5-a) de la PARTIE I)

0.25 b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

2- On suppose que $0 \le u_0$ et on pose $(\forall x \in \mathbb{R})$; $g(x) = e^{-x} + \frac{1}{2}x - \frac{3}{4}$

0.5 a) Montrer que : $(\forall x \in \mathbb{R})$; g(x) > 0 (On prendra : $\ln 2 = 0.69$)

b) En utilisant le résultat de la question précédente, montrer que : $(\forall n \in \mathbb{N})$; $0 \le u_n$

(On remarque que: f(x)+x=4xg(x))

0.25 c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

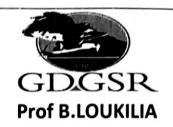
0.5 d) Calculer $\lim_{n\to+\infty} u_n$

0.5

3- On suppose que $u_0 < 0$

0.5 a) Montrer que : $(\forall n \in \mathbb{N})$; $u_{n+1} - u_n \le f(u_0)$

0.5 b) Montrer que: $(\forall n \in \mathbb{N})$; $u_n \le u_0 + nf(u_0)$


0.25 c) En déduire $\lim_{n\to+\infty} u_n$

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

EXERCICE 34

Partie (1) Soit $(V_n)_{n>0}$ la suite telle que $(\forall n \in \mathbb{N}^*)$ $V_n = \sum_{k=1}^{k=n} \frac{1}{k}$

- 1) montrer que $(\forall k \in \mathbb{N}^*)$ $\frac{1}{k+1} \le \ln\left(1 + \frac{1}{k}\right)$
- 2) en déduire que $(\forall n \in \mathbb{N}^*)$ $V_n \le 1 + \ln(n)$

Partie (2) On considère la suite $(U_n)_{n\geq 0}$ définie par : $U_0=1$ 9 $U_{n+1}=U_n+\frac{1}{U_n}$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n > 0$ en déduire la monotonie de $(U_n)_{n \geq 0}$
- 2) a) montrer que $(\forall n \in \mathbb{N}) U_{n+1}^2 U_n^2 = 2 + \frac{1}{U_n^2}$
- b) en déduire que $(\forall n \in \mathbb{N}) U_n^2 = 2n + 1 + \sum_{k=0}^{k=n-1} \frac{1}{U_k^2}$
- 3) montrer que $(\forall n \in \mathbb{N})$ $U_n^2 \ge 2n + 2$ et calculer $\lim_{n \to +\infty} U_n$
- 4) montrer que $(\forall n \in \mathbb{N})$ $U_n^2 \le 2n + 1 + \frac{1}{2}V_n$ en déduire $\lim_{n \to +\infty} \frac{U_n}{\sqrt{2n}}$

EXERCICE 5

Soit m un complexe , on considère dans ${\Bbb C}$ l'équation :

- (E) $Z^2 (1-im)Z + 2m^2 2im = 0$ on note Z_1 ; Z_2 les solutions de (E)
- 1) Déterminer m pour que $Z_1 \times Z_2 = 1$
- 2) Déterminer m pour que $Z_1 = 1 + i$ soit solution de (E) puis déterminer la deuxième solution (on donne $8 6i = (3 i)^2$)
- 3) Vérifier que le discriminant de (E) s'écrit $\Delta = (1+3im)^2$
- Puis déterminer les solutions Z_1 et Z_2

2éme BAC S.M

Durée: 4h

0.5

0.5

0.25

0.25

0.75

0.75

Année scolaire 2019/2020

Préparation pour le national 2020

Exercice01 : (03 points)

Soit a et b deux entiers relatifs sont premiers entre eux on pose : $N = a^4 + b^4$

- 0.5 | 1- Montrer que $(\forall n \in \mathbb{Z}) \ n^4 \equiv 0[16] \ ou \ n^4 \equiv 1[16].$
- 0.25 2- En déduire que N = 1[16] ou N = 2[16]
 - 3- Soit p un nombre premier tel que $p \ge 3$ et p/N
- 0.25 a- Montrer que $p \wedge a = 1$ et $p \wedge b = 1$
- 0.75 b- Montrer que : $(\exists c \in \mathbb{Z})$ $ac \equiv -1[p]$, puis en déduire que $(\exists x \in \mathbb{Z})$ $x^4 \equiv -1[p]$
 - c- Soit r le reste de la division euclidienne de p par 8
- 0.75 i. Montrer que : $x^{r-1} \equiv 1[p]$
 - ii- Montrer que : r=1

Exercice02: (05 points)

Première partie

Soit m un nombre complexe non nul, on considère dans \mathbb{C} l'équation suivante : $(E): m^2z^2 + m^3z + 1 - im^2 = 0$

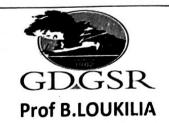
- 0.25 1- Résoudre l'équation (E) pour que m=-1.
 - 2- Déterminer la valeur de m pour lequel u=1+i soit une solution de (E), puis déterminer l'autre solution de (E) pour chaque cas.
 - 3- a- Montrer que Δ le discriminant de (E) est écrié sous forme $\Delta = m^2 \left(m^2 + 2i\right)^2$ b- Déterminer Z_1 et Z_2 les deux solutions de (E).

Deuxième partie

1- Le plan complexe (P) est muni d'un repère orthonormé $\left(O,\overrightarrow{e_1},\overrightarrow{e_2}\right)$

On considère dans (P) les points A,B et M d'affixe respectivement : $a=-m-\frac{i}{m}$;

$$b = \frac{i}{m}$$
 et m , on pose $z = \frac{m-a}{m-b}$


- a- Montrer que : $(\bar{z} = z) \Leftrightarrow \left(\arg(m) \equiv \frac{\pi}{4} [\pi] \text{ ou } \arg(m) \equiv -\frac{\pi}{4} [\pi]\right)$
- b- En déduire l'ensemble des points M(m) pour lequel les points A,B et M sont alignées.

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

Troisième partie

On considère la suite numérique $(U_n)_n$ définie par $(\forall n \in \mathbb{N}^*)$ $U_n = \int_0^1 f_n(x) dx$

- 0.5 1- a- Montrer que $(\forall n \in \mathbb{N}^*)$ $U_n > 0$
- 0.25 b- Étudier le signe de $f_{n+1}(x) f_n(x)$ sur l'intervalle [0,1]
- 0.25 c- En déduire que la suite $(U_n)_n$ est décroissante
- 0.5 2- a- Montrer que : $(\forall n \in \mathbb{N}^*) U_{n+1} = -\frac{1}{2} + \frac{n+1}{2} U_n$
- b- En déduire la surface du domaine limité par : (C_{f_1}) et (C_{f_2}) et les droites d'équations x=0 et x=1
- 0.75 3- Montrer que $(\forall n \ge 2)$ $\frac{1}{n+1} \le U_n \le \frac{1}{n-1}$, puis déterminer $\lim_{n \to +\infty} U_n$ et $\lim_{n \to +\infty} nU_n$
 - 4- Soit a un réel positive tel que $a \neq U_1$ on considère les suites $(V_n)_n$ et $(d_n)_n$ définies par :

$$\left(\forall n \in \mathbb{N}^{\bullet}\right) \begin{cases} V_{n+1} = -\frac{1}{2} + \frac{n+1}{2}V_{n} \\ V_{1} = a \end{cases} \text{ et } d_{n} = \left|V_{n} - U_{n}\right|$$

- 0.75 a- Montrer que $(\forall n \in \mathbb{N}^*)$ $d_n = \frac{n!}{2^{n-1}} d_1$, puis démontrer que $\lim d_n = +\infty$
- 0.5 b. Montrer que la suite $(V_n)_n$ est divergente.

Quatrième partie

On pose
$$(\forall n \in \mathbb{N}^*)$$
 $W_n = \frac{2^n}{n!}U_n$


- 0.25 1- a- Montrer que $(\forall n \in \mathbb{N}^*)$ $\frac{2^{n-1}}{n!} \leq 1$
- 0.25 b- Montrer que $(\forall n \in \mathbb{N}^*)$ $W_n \leq \frac{2e^2}{n+1}$, puis en déduire que $\lim W_n = 0$
- 0.5 2- a- Montrer que $(\forall n \in \mathbb{N}^*)$ $W_{n+1} = -\frac{2^n}{(n+1)!} + W_n$
- 0.25 b- Calculer la dérivée de la fonction $x \to \left(\frac{3}{2} x\right)e^{2x}$, puis montrer que $W_1 = \frac{1}{2}\left(e^2 3\right)$
- 0.5 c- Montrer que : $(\forall n \in \mathbb{N}^*)$ $W_n = \frac{1}{2} \left(e^2 \sum_{k=0}^n \frac{2^k}{k!} \right)$
- 0.25 d- En déduire la limite $\lim_{n\to+\infty} \sum_{k=0}^{n} \frac{2^k}{k!}$

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

2- On considère R la rotation de centre B et d'angle $\frac{\pi}{2}$, on pose A' = R(A); M' = R(M) et $B' = R^{-1}(M)$

0.75

a- Déterminer a' l'affixe du point A' et montrer que l'affixe du point B' est $b' = -im + \frac{i-1}{m}$

0.75

b- Déterminer m' l'affixe du point M' , puis montrer que B est le milieu de segment $\begin{bmatrix} B'M' \end{bmatrix}$

0.75

c- Soit I le milieu de segment [AM], d'une affixe z_I

Calculer $\frac{b'-a'}{b-z_{\mathbf{I}}}$, puis en déduire que $(A'B')\perp(BI)$ et que A'B'=2BI

Problème: (12 points)

<u>Première partie</u>

Soit n un entier naturel non nul, on considère la fonction numérique f_n définie sur $\mathbb R$ par : $f_n(x) = (1-x)^n e^{2x}$, et $\left(C_{f_n}\right)$ sa courbe dans un repère orthonormée $\left(O,\vec{i},\vec{j}\right)$ et que $\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2cm$

0. 75

1- Montrer que $\lim_{x\to -\infty} f_n(x) = 0$, puis calculer $\lim_{x\to +\infty} f_n(x)$

0. 5

2- Étudier les branches infinies de la courbe $\left(C_{f_n}\right)$ au voisinage de $+\infty$.

0.5

3- Calculer $f_n'(x)$, puis dresser le tableau de variation des fonctions f_1 et f_2 .

0.25

4- a- Étudier la position relative des courbes $\left(C_{f_1}\right)$ et $\left(C_{f_2}\right)$

1

b- Tracer dans un repère orthonormée $\left(O,\vec{i},\vec{j}\right)$ les courbes $\left(C_{f_{i}}\right)$ et $\left(C_{f_{2}}\right)$

Deuxième partie

On considère la fonction F définie sur $]-\infty,0]$ par : $F(x) = \int_{1+e^{2t}}^{0} dt$

0.5

1- a- Montrer que la fonction F est dérivable sur l'intervalle $]-\infty,0$ [et que $F'(x) = \frac{(x-1)e^{2x}}{1+e^{2x}}$

0.25

b- Étudier les variations de ${\it F}$

0.75

2- a- Montrer que $(\forall x < 0) \frac{1}{2} \int_{1}^{0} f_1(t) dt \le F(x) \le \frac{1}{1 + e^{2x}} \int_{1}^{0} f_1(t) dt$

0.75

b- En utilisant une intégrale par parties montrer que : $\int_{0}^{0} f_{1}(t) dt = \frac{3}{4} + \frac{1}{2} x e^{2x} - \frac{3}{4} e^{2x}$

0.75

c- On admet que $\lim_{x\to -\infty} F(x) = l$, montrer que $\frac{3}{8} \le l \le \frac{3}{4}$

(2)

Examen blanc 3 2éme BAC S. M Durée: 4h

0.25

0.5

0.75

0.75

0,5

0.5

Année scolaire 2019/2020

Préparation pour le national 2020

EXERCICE 1: (3.5 points) les parties I et II sont indépendantes

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$

- I- On considère dans (1'équation (E): $iz^2 + (2-i)az (1+i)a^2 = 0$ où a est un nombre complexe non nul.
- 0.75 Déterminer z₁ et z₂, les deux racines de l'équation (E)
 - 2) a- Vérifier que : $z_1 z_2 = a^2(i-1)$.
 - b- Montrer que : $z_1 z_2$ est un nombre réel \Leftrightarrow arg $a = \frac{-3\pi}{8} \left| \frac{\pi}{2} \right|$
 - II-Soient c un nombre réel non nul et z un nombre complexe non nul.
 - On considère les points A, B, C, D et M d'affixes respectifs 1, 1+i, c, ic et z
- 0.5 1)a-Montrer que : A, D et M sont alignés \Leftrightarrow $(ic+1)z+(ic-1)\overline{z}=2ic$ (remarquer que $c=\overline{c}$)
- 0.5 b -Montrer que : $(AD) \perp (OM) \Leftrightarrow (ic+1)z - (ic-1)\overline{z} = 0$
 - 2) Soit h 1' affixe du point H, la projection orthogonale du point O sur(AD)
 - a Montrer que : $h-(1+i)=\frac{i}{c}(h-c)$.
- 0.25 b - En déduire que $(CH) \perp (BH)$

EXERCICE 2:(3 points)

- 1) On considère dans \mathbb{Z}^2 l'équation (E): 143x 195y = 52
- a Déterminer le plus grand commun diviseur de 143 et 195, puis en déduire que 0.5 l'équation (E) admet des solutions dans \mathbb{Z}^2
 - **b** Sachant que (-1, -1) est une solution particulière de l'équation (E), résoudre dans \mathbb{Z}^2 l'équation (E) en précisant les étapes de la résolution.
- Soit n un entier naturel non nul premier avec 5 0.5
 - Montrer que pour tout k de [N] on $a: n^{4k} \equiv 1$ [5]
 - 3) Soient x et y deux entiers naturels non nuls tel que $x \equiv y$ [4]
 - a-Montrer que pour tout n de \mathbb{N}^* , on a : $n^x \equiv n^y$ [5]
 - b- En déduire que pour tout n de \mathbb{N}^* , on a : $n^x \equiv n^y$ [10]
- 4) Soient x et y deux entiers naturels tel que(x, y) est solution de l'équation (E)0.25

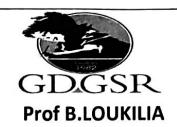
Montrer que pour tout n de \mathbb{N}^* , les deux nombres n^x et n^y ont le même chiffre des unités dans l'écriture dans le système décimal.

2éme BAC S. M

Durée: 4h

0.5

1


0.25

0.25

0.25

Année scolaire 2019/2020

Préparation pour le national 2020

EXERCICE 3: (5.5 points)

n est un entier naturel non nul.

On considère la fonction numérique f_n définie sur \Re par : $f_n(x) = x + \frac{e^{-x}}{n}$

 $\operatorname{Soit}(C_n)$ la courbe représentative de f_n dans le plan muni d'un repère orthonormé $(O;\vec{i},\vec{j})$

- 0,5 1) Calculer $\lim_{x \to -\infty} f_n(x)$ et $\lim_{x \to +\infty} f_n(x)$
- 0.5 2) a Etudier la branche infinie $de(C_n)$ au voisinage $de -\infty$.
 - b Montrer que la droite (D) d'équation y = x est une asymptote oblique à la courbe (C_n) au voisinage de $+\infty$, puis déterminer la position relative de (C_n) et (D)
- 0.75 3) Etudier les variations de f_n et dresser son tableau de variations.
- 0.75 4) Construire la courbe (C_3) . (On prend $f_3(-0,6) = 0$ et $f_3(-1,5) = 0$ et $\ln 3 = 1,1$)
- 0.25 5) a- Montrer que pour $n \ge 3$ on a : $\frac{e}{n} < \ln n$
 - b- Montrer que pour $n \ge 3$ l'équation $f_n(x) = 0$ admet exactement deux solutions x_n et y_n telles que : $x_n \le -\ln n$ et $\frac{-e}{n} \le y_n \le 0$
 - 0.5 c- Calculer $\lim_{n\to+\infty} x_n$ et $\lim_{n\to+\infty} y_n$
 - 6) On considère la fonction numérique g définie $\sup[0,+\infty[$ par : $\begin{cases} g(x) = -1 x \ln x ; & x > 0 \\ g(0) = -1 \end{cases}$
 - a- Montrer que la fonction g est continue à droite au point 0
 - b- Vérifier que pour $n \ge 3$ on a : $g\left(\frac{-1}{x_n}\right) = \frac{\ln n}{x_n}$
 - c- En déduire $\lim_{n\to+\infty} \frac{\ln n}{x_n}$

EXERCICE 4: (4.5points)

On considère la fonction numérique F définie sur [0,1] par :

$$F(0) = 1$$
 et $F(x) = \frac{1}{x} - \frac{\ln(1+2x)}{2x^2}$ si $x > 0$

- 0.25 1) Soit x un élément de [0,1]; Montrer que pour tout t de [0,x] on a : $\frac{1}{1+2x} \le \frac{1}{1+2t} \le 1$
 - 2) Soit x un élément de]0,1]
- 0.5 a-Montrer que $F(x) = \frac{2}{x^2} \int_0^x \frac{t}{1+2t} dt$
- 0.75 b-Montrer que : $\frac{1}{1+2x} \le F(x) \le 1$ En déduire que la fonction F est continue à droite au point 0

Examen blanc 3 2éme BAC S. M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

0.75

3) En utilisant une intégration par parties, montrer que pour tout x de [0,1] on a:

$$\int_0^x \frac{2t}{1+2t} dt = \frac{x^2}{1+2x} + 2 \int_0^x \left(\frac{t}{1+2t}\right)^2 dt$$

4) Soit x un élément de [0,1]

0.5

a- Montrer que
$$F'(x) = -\frac{4}{x^3} \int_0^x \left(\frac{t}{1+2t}\right)^2 dt$$

0.75

b-Montrer que :
$$\frac{-4}{3} \le F'(x) \le \frac{-4}{3(1+2x)^2}$$
 (on pourra utiliser le résultat de la question 1))

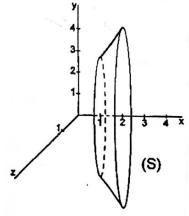
0.75

c- En appliquant le théorème des accroissements finis à la fonction F $\sup[0,x]$ montrer

que
$$\frac{-4}{3} \le \frac{F(x) - F(0)}{x} \le \frac{-4}{3(1+2x)^2}$$

0.25

d-Déduire que la fonction F est dérivable à droite en 0 en précisant son nombre dérivé a droite au point 0.


Exercice 5 (4 points)

Dans la figure ci-contre, le solide de révolution (S) est obtenu en faisant tourner

la portion de la courbe d'équation $y = e^{\sqrt{x}}, x \in [1, 2]$

autour de l'axe (Ox).

Le but de cet exercice est de calculer le volume $oldsymbol{v}$ de ce solide .

1) Soit F la fonction définie sur $[1, +\infty[$ par $F(x) = \int_{1}^{x} e^{\sqrt{4t}} dt$.

Vérifier que $v = \pi F(2)$.

2) Soit G la fonction définie sur $[1, +\infty[$ par $G(x) = \int_{1}^{\sqrt{4x}} te^{t} dt$.

a) Montrer que G est dérivable sur $[1, +\infty[$ et que G'(x) = 2 F'(x).

b) En déduire que pour tout réel x de $[1, +\infty[$, 2 F(x) = G(x) - G(1).

3) a) Montrer que pour tout réel x de $[1, +\infty[$, $G(x) = (\sqrt{4x} - 1)e^{\sqrt{4x}}$.

b) Calculer alors $oldsymbol{v}$.

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

L'épreuve comporte trois exercices et un problème tous indépendants deux à deux.

Exercice 1

1- Résoudre dans R l'équation différentielle suivante :

$$(E): y'' - 6y' + 8y = 0.$$

2-a-Donner f la solution particulière de (E) qui vérifie les conditions suivantes : f(0) = 1 et f'(0) = 3.

b-Déduire une primitive de f.

Exercice 2

Le plan complexe est rapport à un repère orthonormé direct (o, \vec{u}, \vec{v}) .

On note le point A d'affixe -2.

On considère dans \mathbb{C} l'équation (E) : $3z^3 - 2z^2 + 4z + 16 = 0$.

Soit $\alpha \in \mathbb{C}^*$ et M, N et P les points d'affixes respectives α , $\frac{3}{2}$ α^2 et $\frac{8}{\alpha}$.

1-Montrer que si $\alpha \in \mathbb{R}^*$ alors les points M , N et P sont alignés.

Dans la suite de l'exercice on suppose que α n'appartient pas à $\mathbb R$.

2-Montrer que si MNAP est un parallélogramme alors α est solution de l'équation (E).

3-Dans cette question on prend $\alpha = 1 + i\sqrt{3}$.

a-Donner l'écriture exponentielle de chacun des nombres complexes α ,

$$\frac{3}{2} \alpha^2$$
 et $\frac{8}{\alpha}$.

b-placer dans le repère (o, \vec{u}, \vec{v}) les points A, M, N et P.

c-Donner l'écriture algébrique de chacun des nombres complexes $\frac{3}{2} \alpha^2$ et $\frac{8}{\alpha}$.

d-Montrer que le quadrilatère MNAP est un parallélogramme.

- 4-a-Montrer que si α est solution de l'équation (E) alors $\bar{\alpha}$ est solution de l'équation (E).
 - b-En déduire les affixes des points M pour lesquels MNAP est un parallélogramme .

Exercice 3

1-Soit x un entier non nul premier avec 53.

a-S'assurer que $x^{52} \equiv 1 [53]$.

b-En déduire que pour tout entier naturel k , $x^{52k+1} \equiv x$ [53].

2-Soit l'équation $(E_1): x^{29} \equiv 2 [53]$ ou $x \in \mathbb{Z}$.

Montrer que 2^9 est une solution de (E_1) .

3-Soit x est une solution de (E_1) .

a-Montrer que x est premier avec 53.

b-Montrer que $x^{261} \equiv x$ [53].

c-En déduire que $x \equiv 2^9$ [53].

4-a- Montrer que $2^9 \equiv 35 [53]$.

b-Donner alors l'ensemble des solutions dans \mathbb{Z} *de l'équation* (E_1) .

5-On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation $(E_2): 71\alpha - 53\beta = 1$.

a-Vérifier que (3,4) est une soultion l'équation (E_2) .

b-Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ *l'équation* (E_2) .

6- Résoudre dans \mathbb{Z} le système $\begin{cases} x \equiv 34 \ [71] \\ x^{29} \equiv 2 \ [53] \end{cases}$

Problème

Partie 1

1-Montrer que $\forall x \in]-1,0[\cup]0,+\infty[; \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt = \frac{\ln(x+1)-x}{x^2} + \frac{1}{2}.$

2-Montrer que $\forall x \in]-1,0[\cup]0,+\infty[;\frac{x}{3(x+1)} \le \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt \le \frac{x}{3}.$

3-En déduire que $\lim_{x\to 0} \frac{\ln(x+1)-x}{x^2} = -\frac{1}{2}$.

Partie (2)

On considère la fonction numérique f définie sur $]0, +\infty[$ par :

$$\begin{cases}
f(x) = \frac{\ln(x)}{x-1} & ; x \in]0, +\infty[-\{1\}], \\
f(1) = 1
\end{cases}$$

- 1-Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$ puis donner leurs interprétations géométriques.
- 2-a- Montrer que f est continue sur $]0,+\infty[$.
 - *b-Etudier la dérivabilité de f en x_0 = 1 puis interpréter géométriquement le résultat .*
- 3-a- Montrer que f est dérivable sur chacun des intervalles]0,1[et $]1,+\infty[$ et que pour tout réel strictement positif diffèrent de 1 on a :

$$f'(x) = \frac{(x-1)-x\ln(x)}{x(x-1)^2}$$
.

b-Montrer que pour tout réel strictement positif diffèrent de 1 on a :

$$(x-1) - x ln(x) < 0$$

puis dresser le tableau de variations de f.

- 4- Tracer la courbe (C_f) dans un repère orthonormé (o,\vec{i},\vec{j}) en précisant la tangente à la courbe (C_f) au point d'abscisse 1.
- 5-Montrer que pour tout entier naturel non nul n, il existe un unique $\alpha_n > 0$ tel que $f(\alpha_n) = 1 + \frac{1}{n}$.
- 6-a- Vérifier que pour tout entier naturel non nul n, $0 < \alpha_n < 1$.
 - b-Montrer que la suite $(\alpha_n)_{n>0}$ est stictement croissante puis déduire qu'elle converge.

c-Montrer que $\lim_{n\to+\infty} (\alpha_n) = 1$.

d- Montrer que

$$\lim_{n\to+\infty} n(1-\alpha_n) = 2$$
 puis déduire que $\lim_{n\to+\infty} ((\alpha_n)^n) = \frac{1}{e^2}$.

Partie (3)

Soit F la fonction numérique définie sur $[0, +\infty[$ *par :*

$$\begin{cases} F(x) = \int_{x}^{x^{2}} f(t) dt & ; x > 0 \\ F(0) = 0 \end{cases}.$$

1-a- b- Montrer que pour tout réel strictement positif diffèrent de 1 on α :

$$\frac{2xlnx}{x+1} \le F(x) \le xlnx .$$

b-Montrer que F est continue à droite au point zéro.

Calculer $\lim_{x\to 0^+} \frac{F(x)}{x}$ puis interpréter géométriquement le résultat.

2-a-Montrer que pour tout x > 1 on a :

$$ln(x)ln(x+1) \le F(x) \le 2ln(x)ln(x+1).$$

- *b-Calculer* $\lim_{x\to+\infty} F(x)$ et $\lim_{x\to+\infty} \frac{F(x)}{x}$ puis donner leurs interprétations géométriques.
- 3-a-Montrer que F est dérivable sur $]0,+\infty[$ et que F'(1)=1 et que pour tout x>0, on a $F'(x)=\frac{(3x-1)\ln x}{x^2-1}$.

b-Dresser le tableau de variations de F sur $]0,+\infty[$.

Fin.

2.BAC - S.M.BIOF

SIMILI MAI /2019

Durée: 4

GDGSR Khouribgha

Prof B.LOUKILIA

<u>Exercice 1</u>: 7,5 pt

Soit F la fonction définie par :

$$\forall x \in \left[0; \frac{1}{2} \left[\bigcup \right] 1; +\infty \right[: F(x) = \int_{\ln x}^{\ln 2x} \left[\frac{e^t}{t} \right] dt ; si: x \neq 0 ; F(0) = 0 \right]$$

0,5pt 1) a- Montrer que F est dérivable sur chacun des intervalles :
$$0;\frac{1}{2}$$
; $]1;+\infty[$

$$0.5pt b-V\'{e}rifier\ que \ : \forall x \in \left]0; \frac{1}{2} \right[\cup \left]1; +\infty \right[: F'(x) = \frac{\ln\left(\frac{x}{2}\right)}{\left(\ln x\right)\left(\ln 2x\right)}$$

0.5pt 2) a- Montrer que
$$\forall x \in \left]0; \frac{1}{2} \left[\bigcup \right]1; +\infty \right[: F\left(x\right) = \int_{x}^{2x} \frac{1}{\ln t} dt$$

0.5pt
$$b$$
- $En\ d\'eduire$: $\forall x \in \left]0; \frac{1}{2} \left[\bigcup \right] 1; +\infty \left[: \frac{x}{\ln(2x)} \le F\left(x\right) \le \frac{x}{\ln x} \right] \right]$

1pt c-Calculer:
$$\lim_{x\to +\infty} F(x)$$
; $\lim_{x\to +\infty} \frac{F(x)}{x}$ et interpréter géométriquement les résultats.

4) Soit
$$u$$
 la fonction définie par : $\forall t \in]0;1]$: $u(t) = 2 - 2t + \ln t$

0,75pt
$$a$$
-Montrer que : $\exists ! \alpha \in \left] 0; \frac{1}{2} \right[: u(\alpha) = 0$, et en déduire le signe de u sur $\left[\alpha; 1 \right[$

0,5pt b- En déduire que :
$$\forall x \in \left[\alpha; \frac{1}{2}\right[: F(x) \le \int_{x}^{2x} \frac{dt}{2t - 2}\right]$$

0,5pt
$$c$$
- Calculer $\lim_{x \to \left(\frac{1}{2}\right)^{-}} F(x)$

0,5pt 5) Montrer que :
$$\forall t > 0$$
: $\ln t \le t - 1$, puis calculer : $\lim_{x \to 1^+} F(x)$

0,75pt b- Construire la courbe de la fonction
$$F$$
 dans un repère orthonormé $\left(O;\vec{i},\vec{j}\right)$

(on prend
$$F(2) \approx 1.9$$
) Page 1/4

Exercice 2: 2,5 pts 1pt 1) Soit f la fonction définie sur $]0,+\infty[$ par : $f(x) = \ln(x) - \arctan(x)$ Pour tout n de \mathbb{N} , on considère l'équation (E_n) : $f(x) = n\pi$ Montrer que l'équation (E_n) admet une unique solution x_n dans $]0,+\infty[$. 2) Montrer que : $(\forall n \in \mathbb{N})$: $x_n > e^{n\pi}$, puis en déduire $\lim_{n \to \infty} x_n$ 0,5pt $(\forall n \in \mathbb{N}): \ln\left(\frac{x_n}{e^{n\pi}}\right) = \arctan(x_n)$, puis en déduire $\lim_{n \to +\infty} \frac{x_n}{e^{n\pi}}$. 3) Montrer que: 0,5pt 4) Montrer que : $(\forall n \in \mathbb{N})$: $\ln\left(\frac{x_n}{x_{n+1}}\right) = \arctan(x_n) - \arctan(x_{n+1}) - \pi$, puis en déduire 0,5pt $\lim_{n\to+\infty} \left(\frac{x_n}{y} \right)$ Exercice3: 3,75 pts on considère l'ensemble : $E = \left\{ M(a,b,c) = \begin{pmatrix} c & a & b \\ 0 & c & a \\ 0 & 0 & c \end{pmatrix} / (a,b,c) \in \mathbb{R}^3 \right\}$ et On pose : $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad , \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad , \quad K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ 1) a- Montrer que (E,+,.) est un espace vectoriel réel. 0,5pt b-Montrer que (I, J, K) est une base de E. 0,5pt 2) a- Calculer K^2 0,25pt b-Montrer que E est une partie stable de $(\mathcal{M}_3(\mathbb{R});\times)$. 0,5pt 3) Montrer que $(E,+,\times)$ est un anneau commutatif unitaire non intègre. 1pt 4) Pour tout a de \mathbb{R} , on pose $M_a = M(a, \frac{1}{2}a^2, 1)$ et $G = \{M_a / a \in \mathbb{R}\}$ On considere l'application: $f: \mathbb{R} \to G$ telle que $(\forall x \in \mathbb{R})$ $f(x) = M_x$ a-Montrer que f est un isomorphisme de $(\mathbb{R},+)$ dans (G,\times) . 0,5pt b- En déduire que la structure de (G,\times) . 0,25pt c-Déterminer \mathbf{M}_{a}^{-1} , la matrice inverse de la matrice \mathbf{M}_{a} . 0,25pt *Page 2/4*

Exercice 4 : 3,25 pts (les parties A et B sont indépendantes) *Le plan complexe étant rapporté au repère orthonormé direct* $(O; \vec{u}; \vec{v})$. Partie A: 1) On considère dans \mathbb{C} , l'équation : (E) : $z^2 - 4z \cos\left(\frac{3\theta}{4}\right) e^{i\frac{\theta}{4}} + 4e^{i\frac{\theta}{2}} = 0$ où $\theta \in \left]0; 2\pi\right]$ a-Vérifier que le discriminent de l'équation (E) est $\Delta = \left(4ie^{i\frac{\theta}{4}}\sin\left(\frac{3\theta}{4}\right)\right)^2$. 0,25pt b-Soient z_1 et z_2 les solutions de l'équation (E). 0,5pt Ecrire z_1 et z_2 sous forme exponentielle. c-Montrer que: $(OM_1) \perp (OM_2) \Leftrightarrow \theta \equiv \frac{\pi}{3} \left[\frac{2\pi}{3} \right]$ avec M_1 et M_2 les points d'affixes 0, 5pt z_1 et z_2 respectivement. **Partie B** : Soient M et A les points d'affixes respectives : z et z . B(b) est l'image du point A par la rotation R de centre O et d'angle $\frac{\pi}{2}$ M'(z') est l'image du point B(b) par la translation T de vecteur $\overrightarrow{u} - \overrightarrow{v}$ 1) Déterminer b en fonction de z et vérifier que z' = i z + 1 - i0,5pt 2) On considère la transformation f qui transforme un point M(z) en M'(z') tel *que* : z' = i z + 1 - ia- Montrer que l'ensemble des points invariants par f est la droite (D) de vecteur 0,5pt directeur $\overline{w}(1,1)$. b- Calculer $\frac{z'-z}{1+i}$, puis déduire que $\overrightarrow{\text{MM}'} \perp \overrightarrow{w}$. 0,5pt c- Montrer que le milieu du segment [MM'] appartient à la droite (D). 0,25pt 0,25pt d- En déduire la nature de la transformation f Exercice 5: 3 pts Partie A: 1) Montrer que si k est un nombre premier positif tel que $5^k - 2^k \equiv 0 \lceil k \rceil$, alors k = 3. 0,25pt 0,25pt 2) En déduire que si k est un nombre premier supérieur strictement que 3, alors les nombres k et $5^k - 2^k$ sont premiers entre eux. *Page 3/4*

Partie B : Soient p et q deux nombres premiers positifs tels que : $3 \le p < q$ et $(5^p - 2^p)(5^q - 2^q) \equiv 0 [pq]$ 1) On suppose dans cette question que p = 3. a-Montrer que : $39(5^q - 2^q) \equiv 0 [q]$ 0,25 b- En déduire que q = 13 (on pourra utiliser la question 2 de la partie A) 0,25pt 2) On suppose dans cette question que p > 3. a-vérifier que p > 5 , puis montrer que : $5^q - 2^q \equiv 0 [p]$ et que : 0,75pt $5^{p-1} - 2^{p-1} \equiv 0 [p]$ b- Soit d le plus petit entier naturel non nul tel que : $5^d-2^d\equiv 0$ [p] Soit $n \in \mathbb{N}^*$ tel que $5^n - 2^n \equiv 0$ [p], et r le reste de la division euclidienne de n Montrer que : $5^r - 2^r \equiv 0 [p]$ 0,25pt 0,25pt c-Montrer que d est un diviseur commun de q et p-1. 0,25pt d- En déduire que d=1. 3) Déduire de ce qui précède les nombres premiers positifs p et q tels que : $3 \le p < q$ et $(5^p - 2^p)(5^q - 2^q) \equiv 0 [pq]$ 0,5pt Page 4/4

2éme BAC S.M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

L'épreuve comporte trois exercices et un problème tous indépendants deux à deux.

Exercice 1

- 1- Résoudre l'équation différentielle suivante (E): y'' + y = 0.
- 2-Soit E l'ensemble des fonctions définies et deux fois dérivables sur \mathbb{R} telles que pour tout $x \in \mathbb{R}$, $f'(x) + f\left(\frac{\pi}{2} x\right) = 0$ ou f' désigne la fonction dérivée def.

a-Soit g la fonction définie sur \mathbb{R} par $g(x) = \cos x$.

Vérifier que g est un élément de E.

b-Soit f un élément de E . Vérifier que , pour tout réel x , $f''(x) = f'(\frac{\pi}{2} - x)$.

c-En déduire que si f un élément de E alors f est solution de l'équation différentielle (E):y''+y=0.

d-Déterminer alors l'ensemble E.

Exercice 2

On considère dans l'espace vectoriel reél $(\mathcal{M}_2(\mathbb{R}),+,.)$ l'ensemble

$$E = \left\{ M = \begin{pmatrix} a & b \\ -2b & a+2b \end{pmatrix} / (a,b) \in \mathbb{R}^2 \right\} \text{ on pose } J = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$$

1- a-Montrer que (E, +) est un groupe commutatif.

b-Montrer que (E, +, .) est un espace vectoriel reél et donner sa dimension

2-Calculer J^2 en fonction de I et J et en deduire le produit

$$M(a,b) \times M(c,d)$$

3-On considère l'application f définie par $f: E \to \mathbb{C}$

$$M(a,b) \mapsto z = (a+b) + ib$$

a-Montrer que f est un iomorphisme de (E,\times) vers (\mathbb{C},\times) .

c-En déduire la structure de $(E, +, \times)$.

d-Determiner dans E l'ensemble des solutions de l'equation $M^3 - I + J = \theta$ avec θ est la matrice nulle dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 3

On considère dans \mathbb{C} l'équation $(E): \mathbf{z}^2 - (\mathbf{1} + 2\mathbf{i})m\mathbf{z} - (\mathbf{1} - \mathbf{i})m^2 = \mathbf{0}$. ou m est un nombre complexe non nul d'argument $\theta \in]0,\pi[$.

1-a- Résoudre dans \mathbb{C} l'équation (E).

On note z_1 et z_2 les solutions de l'équation (E).

b-Montrer que $(z_1.z_2 \text{ est strictement positif})$ si et seulement si $(\theta = \frac{5\pi}{8})$.

Dans la suite de l'exercice on prend $\theta = \frac{5\pi}{8}$.

2-Verifier que $z_1 . z_2 = |m|^2 \sqrt{2}$.

3- Le plan complexe est rapporté á un repère orthonormé direct (o, \vec{u}, \vec{v}) ,

Soit t un réel strictement positif tel que 2 < t < 3 et $m = \frac{\sqrt{t}}{\sqrt[4]{2}} e^{i\frac{5\pi}{8}}$.

On se propose de construire les points M_1 et M_2 images des solutions

 z_1 et z_2 de l'équation (\boldsymbol{E}), Correspondant au nombre complexe m.

B et C sont les d'affixes respectives $-\frac{\sqrt{2}}{2}$ et t.

E est le point d'intersection du demi-cercle (C) de diamètre [BC] avec l'axe (o, \vec{v}) .

a-Construire un schéma convenable .

b-Montrer que $OE^2 = OB.OC$.

c-En déduire que |m| = 0E.

4-a-Construire le point A d'affixe m .

b-On déduire une construction points M_1 et M_2 images des solutions z_1 et z_2 de l'équation (\mathbf{E}). (on convient que $|z_1| < |z_2|$).

Problème

On considère la fonction numérique f définie sur $[0, +\infty[$ par :

$$f(x) = (x+1)e^{-x}$$

Partie 1

1-a-Montrer que pour tout nombre réel positif x, il existe un réel $c_x \in]x, 2x[$ tel que $f(2x) - f(x) = -xc_xe^{-c_x}$

b-En déduire que pour tout x > 0, f(2x) - f(x) < 0

2- Montrer que $\lim_{x\to+\infty} f(2x) - f(x) = 0$

Partie (2)

Soit F la fonction numérique définie sur $[0, +\infty[$ par :

$$F(x) = \int_{x}^{2x} \frac{1}{1 + te^{-t}} dt$$
, $x > 0$ et $F(0) = 0$

1-a-Verifier que pour tout $x \in [0,1]$, $1-x \le \frac{1}{1+x} \le 1-\frac{x}{2}$

b-En déduire que pour tout t \in [0, + ∞ [,

$$1 - te^{-t} \le \frac{1}{1 + te^{-t}} \le 1 - \frac{te^{-t}}{2}$$

c-Montrer que pour tout nombre réel positif x,

$$x + f(2x) - f(x) \le F(x) \le x + \frac{1}{2} (f(2x) - f(x))$$

d-En déduire que $\lim_{x\to+\infty} F(x) = +\infty$, puis que la droite (D) d'équation

y = x est une asymptote oblique à la courbe (C_F)

e-Etudier la position relative de (D) et (C_F) .

2- Montrer que F est dérivable à droite au point zéro puis déterminer $F'_{d}(0)$.

3-a- Montrer que F est dérivable sur [0, +∞[*et que pour tout x* ∈]0, +∞[

$$F'(x) = \frac{e^{2x} + 2x(e^x - 1)}{(e^{2x} + 2xe^x)(1 + xe^{-x})}$$

b-Dresser le tableau de variations de F.

c-Soit S l'aire du domaine situé entre la courbe C_F et la droite (D) et les deux droites d'équations respectives x=0 et x=1.

Montrer que $0 \le S \le \frac{1}{4}$

Partie 3

Soit n un entier naturel non nul.

- 1-a-Montrer qu'il existe $\alpha_n \in [0, +\infty[$ tel que $\int_{\alpha_n}^{2\alpha_n} \frac{1}{1+te^{-t}} dt = e^{-n}$
 - b-Montrer que la suite $(\alpha_n)_{n>0}$ est décroissante puis déduire qu'elle converge.
 - *c-Montrer que* $\lim_{n\to+\infty} \alpha_n = 0$.
- 2-Soit $(U_n)_{n\geq 1}$ la suite numérique définie par :

$$U_n = \int_0^{\alpha_n} F(t) dt$$
 pour tout entier naturel non nul n.

- a-Montrer qu'il existe $\beta_n \in [0, \alpha_n[$ tel que $U_n = \alpha_n F(\beta_n)$.
- b-Montrer que la suite $(U_n)_{n\geq 1}$ est décroissante puis déduire qu'elle converge en determinant sa limite.
- 3-On considère la suite numérique $(V_n)_{n\geq 1}$ définie pour tout $n\geq 1$ par

$$V_n = n\left(F\left(u_n + \frac{2}{n}\right) - F\left(u_n + \frac{1}{n}\right)\right)$$

a-En utilisant le théorème des accroissement finis, Montrer qu'il existe

$$\gamma_n \in \left] u_n + \frac{1}{n}, u_n + \frac{2}{n} \right[, \quad V_n = \frac{e^{2\gamma_n} + 2\gamma_n(e^{\gamma_n} - 1)}{(e^{2\gamma_n} + 2\gamma_n)(1 + \gamma_n e^{-\gamma_n})} \right]$$

b- En déduire que la suite numérique $(V_n)_{n\geq 1}$ est convergente puis déterminer sa limite .

2éme BACS. M

Durée: 4h

Année scolaire 2019/2020

Préparation pour le national 2020

L'épreuve comporte quatres exercices et un problème tous indépendants deux à deux .

Exercice 1

Pour tout entier naturel non nul n, on considère la fonction numérique f_n définie sur [0,1] par $f_n(x) = e^{-x} - x^{2n+1}$.

1-Etudier les variations de f_n .

2-Montrer que pour tout entier naturel non nul n, l'équation $f_n(x) = 0$ admet une unique solution u_n et que $u_n \in \]0,1[$.

On définit ainsi sur \mathbb{N}^* , une suite (u_n) .

3-a-Soit n un entier naturel non nul et x un réel de l'intervalle]0,1[.

Comparer $f_n(x)$ et $f_{n+1}(x)$.

b-Montrer que pour tout entier naturel non nul n , $f_n(u_{n+1}) < 0$.

c-Montrer que la suite (u_n) est croissante puis déduire qu'elle converge.

4-a-Montrer que pour tout $n \ge 1$, $ln(u_n) = -\frac{u_n}{2n+1}$.

b-Calculer la limite de suite (u_n) .

Exercice 2

Soit m un nombre complexe non nul avec $m \neq \frac{2}{5} + \frac{1}{5}i$.

On considère dans \mathbb{C} l'équation $(E): \mathbf{z}^2 - (1 + m(2 + i))\mathbf{z} + 2m(1 + im) = 0$.

1-a-Vérifier que le discriminant de (E) s'ecrit $\Delta = (1 + m(-2 + i))^2$

b-Résoudre l'équation (E).

2-On suppose que $m \neq i$ et on pose $u = \frac{2m}{1+im}$

a-Montrer que $u \in \mathbb{R} \iff |m|^2 = Im(m)$.

b-En déduire l'ensemble des points M(m) pour que $u \in \mathbb{R}$.

3- Le plan complexe est rapporté á un repère orthonormé direct (o, \vec{u}, \vec{v}) .

Soient M, A et B les points d'affixes respectives m, -i et u.

a-Montere que les points A, M et 0 sont alignés $\iff m \in i\mathbb{R}$

b-Montere que $\frac{u+i}{u} = \frac{1}{2} \frac{m+i}{m}$.

c-En déduire que si $m \notin i\mathbb{R}$ alors les points A, M, O et B sont cocycliques .

Exercice 3

On considère dans \mathbb{Z}^2 l'équation (E) : 2013x - 1962y = 54

1-a-Déterminer le pgcd de 2013 et 1962 et en déduire que l'equation (E) admet des solutions dans \mathbb{Z}^2 .

b-Sachant que le couple (78,80) est une solution particulière de (E) résoudre dans \mathbb{Z}^2 l'équation (E) en précisant les étapes de la résolution.

2-Montrer que si le couple (x,y) est une solution de (E) alors $x \equiv 0$ [6].

3-On pose $d = x \land y$ avec le couple (x, y) est une solution de (E).

Déterminer les valeurs possibles du nombre d .

4-Résoudre dans \mathbb{N}^2 le système $\begin{cases} 671a - 654b = 18 \\ a \land b = 18 \end{cases}$

Exercice 4

Partie (1)

Pour tout x et $y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$, on pose x * y = x + y - 2xy

1 - Montrer que l'on définit ainsi une loi de composition interne dans $\mathbb{R} - \left\{\frac{1}{2}\right\}$.

2 - Montrer que la loi * est commutative et associative .

3-Montrer que $\left(\mathbb{R}-\left\{\frac{1}{2}\right\},*\right)$ est un groupe commutatif.

4- Montrer que $\forall x \in \mathbb{R} - \left\{\frac{1}{2}\right\}, \forall n \in \mathbb{N} - \{0,1\}$

$$x * x * x * \dots * x = \frac{1}{2}[1 - (1 - 2x)^n]$$
 avec n fois x

Partie (2)

Pour tout $x \in \mathbb{R} - \left\{\frac{1}{2}\right\}$, on considère l'ensemble $E = \left\{A(x) / x \in \mathbb{R} - \left\{\frac{1}{2}\right\}\right\}$ avec

$$A(x) = \begin{pmatrix} 1 - x & 0 & x \\ 0 & 1 & 0 \\ x & 0 & 1 - x \end{pmatrix}$$

1-Montrer que E est une partie stable de $(\mathcal{M}_3(\mathbb{R}),\times)$.

2-On considère l'application f définie par $f: \mathbb{R} - \left\{\frac{1}{2}\right\} \to E$

$$x \mapsto A(x)$$

a-Montrer que f est un iomorphisme de $\left(\mathbb{R}-\left\{\frac{1}{2}\right\},*\right)$ vers (E,\times) .

b-En déduire la structure de (E,\times)

c-Soit n un entier naturel non nul et $B = A\left(-\frac{1}{2}\right)$

Montrer que $B^n = A\left(\frac{1-2^n}{2}\right)$ et $[B^n]^{-1} = A\left(\frac{1}{2} - \frac{1}{2^{n+1}}\right)$

avec $[B^n]^{-1}$ est la matrice inverse B^n .

Problème

Partie 1

On considère la fonction numérique f par : $f(x) = ln(x + \sqrt{x^2 + 1})$

On appelle (C_f) la courbe représentative de la fonction numérique f dans un repère orthonormé $(0,\vec{\iota},\vec{j})$.

1-Montrer que $\forall x \in \mathbb{R} \ x + \sqrt{x^2 + 1} > 0$ et en déduire que $D_f = \mathbb{R}$.

2-a-Montrer que f est impaire puis deduire que $D_E = [0, +\infty[$.

b-Etudier la branche infinie de (C_f) *en* $+\infty$.

3-a-Calculer f'(x) pour tout $x \in \mathbb{R}$.

b-En déduire que f est strictement croissante sur D_E .

4-Donner l'equation de la tangente à la courbe (C_f) au point d'abscise 0 .

5-Tracer la courbe (C_f) .

Partie (2)

c-Soit n un entier naturel non nul

On pose
$$V_n = \sum_{k=1}^{k=n} \frac{1}{n+k}$$
 et $U_n = \sum_{k=1}^{k=n} f\left(\frac{1}{n+k}\right)$

1-Calculer $\int_0^1 \frac{1}{x+1} dx$ puis déduire que $\lim_{n\to+\infty} V_n = \ln 2$.

2-a-Montrer que
$$\forall h \ge 0 \ 1-h \le \frac{1}{1+h} \ et \sqrt{1+h} \le 1+\frac{h}{2}$$
.

b-En déduire
$$\forall t \ge 0 \quad 1 - \frac{t^2}{2} \le f'(t) \le 1.$$

3-a-Montrer que
$$\forall x \ge 0 \quad x - \frac{x^3}{6} \le f(x) \le x$$
.

b-En déduire
$$\forall n \in \mathbb{N}^*$$
 $V_n\left(1 - \frac{1}{6n^2}\right) \leq U_n \leq V_n$ puis déteminer $\lim_{n \to +\infty} U_n$

Partie (3)

Soit F la fonction numérique définie par :
$$\left\{ \begin{array}{c} \forall x \in \mathbb{R}^* \ , \ F(x) = \int_x^{2x} \frac{f(t)}{t^2} dt \\ F(0) = \ln 2 \end{array} \right.$$

1-Montrer que F est paire.

2-a-Prouver que
$$\forall x > 0 - \frac{x^2}{4} + \ln 2 \le F(x) \le \ln 2$$
.

b-Etudier la continuité et la dérivabilité de F à droite de 0 .

3-a-Prouver que
$$\forall x > 0$$
 $\frac{f(x)}{2x} \le F(x) \le \frac{f(2x)}{2x}$

b-Calculer
$$\lim_{x \to +\infty} F(x)$$
 et $\lim_{x \to +\infty} \frac{F(x)}{x}$.

4-a- Montrer que F est dérivable sur]0,+∞[*et que pour tout* x ∈]0,+∞[

$$F'(x) = \frac{f(2x)-2f(x)}{2x^2}$$
.

b-Montrer que f'est décroissante sur $]0,+\infty[$

puis déduire que
$$\forall x > 0$$
 $f(2x) < 2f(x)$.

c-Dresser le tableau de variations de F sur $[0, +\infty[$.

Devoir surveillé 3 * 4 -Simili Bac-2ème année Sciences mathématiques Matière : Mathématiques Session Mai 2021

Coefficient: 9 Durée: 4h Lycée ibntoufail Oued-zem Prof B.LOUKILIA

Recommandations Générales

- **❖** L'usage de la calculatrice non programmable est autorisé.
- Le candidat peut traiter les exercices de l'épreuve dans l'ordre qui lui convient.
- Eviter l'utilisation du stylo rouge.
- Traiter d'abord les questions qui vous paraissent faciles.
- * Respecter la numérotation des exercices et des questions.
- Si une question vous parait difficile admettez son résultat et utiliser ce résultat pour répondre aux questions qui suivent.
- Il sera tenu compte de la rédaction des réponses lors de la correction.

L'épreuve se compose de 5 exercices indépendants répartis comme suit :

Equations différentielles	1 pts
Nombres complexes	4 pts
Fonction définie par intégrale	3 pts
Etude de fonction et suites	8 pts
Arithmétique	4 pts
	Nombres complexes Fonction définie par intégrale Etude de fonction et suites

Bonne courage

	Exercice 1: (1 points)					
0. 25	1- Résoudre l'équation différentielle suivante :					
	(E): y'' - 4y' + 13y = 0					
0.25	2- a- Déterminer la solution particulière f de (E) vérifiant les conditions					
	suivantes : $f(0) = 1$ et $f'(0) = 2$.					
0.5						
0. 5	<i>b</i> - Déduire la valeur numérique exacte de l'intégral : $I = \int_0^{\pi} e^{2x} \cos(3x) dx$.					
	Exercice 2: (4 points)					
	Les trois parties (I), (II) sont indépendantes.					
	partie (I)					
	Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .					
	Soit $\alpha \in \mathbb{C} \setminus \{1-i\}$. On considère l'équation (E) : $z^2 - (2+\alpha(-1+i))z - i\alpha(\alpha-2) = 0$.					
	1- a- Montrer que le discriminant de (E) est : $\Delta = (-2 + (1+i)\alpha)^2$.					
0,25	b- En déduire que l'équation (E) admet deux solutions distinctes dans \mathbb{C} en précisant					
0,75	leurs valeurs.					
	2- On considère les points Ω , A, B et C d'affixes respectives $\omega = 1 + i$, $a = i\alpha$,					
1	$b = -\alpha + 2$ et $c = (1-i)(1-\alpha)$.					
_	Déterminer l'ensemble des points A pour que les points O, A et B soient alignés.					
0,5	3- a- Donner l'écriture complexe de la rotation r de centre Ω et d'angle $\frac{\pi}{2}$.					
	b- Vérifier que $r(A) = B$.					
0,25	4- Quelle est la nature du quadrilatère ΩACB ? justifier votre réponse.					
0,5	Partie (II)					
0.75	5- a-Résoudre dans \mathbb{C} l'équation (F) : $z^3 = 1$					
	b-Déterminer la nature du triangle ABC tel que les points A, B et C sont les images					
	des solutions de l'équation (F) .					
	Exercice 3: (3 points)					
	On considère la fonction numérique f définie sur \mathbb{R}^+ par :					
	$\begin{cases} f(x) = \int_{x}^{2x} \ln(e^{t} - 1) dt & \text{pour tout } x \in \mathbb{R}_{+}^{*} \\ f(0) = 0 \end{cases}$					
	$\int_{\mathcal{A}} \int_{\mathcal{A}} \int$					
	(f(0) = 0)					
0.5	1- a-Montrer que f est continue et dérivable sur \mathbb{R}^+_* .					
	b - Calculer $f'(x)$ pour tout x de \mathbb{R}_*^+ .					
0.5	, (c) _F =					

2- On considère la fonction numérique g définie par :

 $g(x) = \ln(e^x - 1)$ pour tout $x \in \mathbb{R}^+_*$.

a- Etudier la monotonie de la fonction numérique $\,g\,$.

0.5

0.5	$1 D(1) = \dots \forall u > 0 u \sigma(u) < f(u) < u \sigma(2u)$					
0.25	b- Déduire que $\forall x > 0 : x. g(x) \le f(x) \le x. g(2x)$.					
	c- Montrer que f est continue à droite au point zéro.					
0.25	d- Etudier la dérivabilité de f à droite au point zéro .					
0.5	e- Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$.					
	Evereice 1 (9 nointe)					
	Exercice 4 (8 points) Partie 1					
	On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \ln\left(\frac{e^x + 1}{e^x}\right)$.					
	On appelle (C_f) la courbe représentative de la fonction numérique f dans					
	un repère orthonormé $(0, \vec{l}, \vec{j})$.					
0,5	1- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.					
0,5	2- Calculer $f'(x)$ pour tout x de \mathbb{R} puis dresser le tableau de variations de f .					
0,5	3-Montrer que la droite (D) d'équation $y = -x$ est une asymptote oblique à la courbe					
	(C_f) puis préciser la position relative de (D) et (C_f) .					
0,5	4 -a- Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que					
	l'on déterminera.					
0,5	b-Déterminer $f^{-1}(x)$ pour tout $x \in J$.					
0,5	5 - Résoudre dans \mathbb{R} l'équation $f(x) = x$.					
1	6- Construire dans le même repère (o, \vec{i}, \vec{j}) la droite (D) et les courbes (C_f) et $(C_{f^{-1}})$ en					
	précisant la tangente à la courbe (C_f) au point d'abscisses 0 . $((C_{f^{-1}})$ est la courbe					
	représentative de f^{-1}).					
	Partie 2					
	Soit $(u_n)_n$ la suite numérique définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \text{ pour tout } n \text{ de } \mathbb{N} \end{cases}$					
	1- Montrer que : $\forall n \in \mathbb{N}$; $u_n > 0$.					
0,5	2-a- Montrer que : $\forall x > 0$; $ f'(x) \le \frac{1}{2}$.					
0,5	4					
	<i>b</i> - En déduire que : $\forall n \in \mathbb{N}$; $\left u_{n+1} - \ln\left(\frac{1+\sqrt{5}}{2}\right)\right \le \frac{1}{2} \left u_n - \ln\left(\frac{1+\sqrt{5}}{2}\right)\right $.					
0,5						
	c- Montrer que $(u_n)_n$ est convergente et déterminer sa limite.					

	Tartic 5					
0,75	1- Montrer que: $\forall t > 0 \; ; \; t - \frac{t^2}{2} \le \ln(1+t) \le t$.					
0,75	2- En déduire que : $\forall x \in \mathbb{R}$; $e^{-x} - \frac{e^{-2x}}{2} \le f(x) \le e^{-x}$. 3- Soit <i>A</i> l'aire du domaine plan limité par (C_f) , l'axe des abscisses , l'axe					
0,5	des ordonnées et la droite d'équation $x=1$.					
	Montrer que $\frac{1}{4e^2} \left[(3e-1)(e-1) \right] \le A \le \left(\frac{e-1}{e} \right)$.					
0,5						
	Exercice 5: (4 points)					
	Les trois parties (I) , (II) et (III) sont indépendantes.					
0,25	I. 1- Montrer que le nombre 673 est premier.					
0, 5	2- Montrer que : $2^{672} \equiv 1 [2019]$ (remarquer que : $2019 = 673 \times 3$).					
0.25	3- Quelle est le reste de la division euclidienne de 2 ²⁰¹⁸ par 2019.					
0,5	4- En déduire que les nombres 2019 et $2^{2018} - 2019^{2019}$ sont premiers entre eux.					
0,0	II. Dans $\mathbb{Z}^* \times \mathbb{Z}^*$, on considère l'équation : (E) : $x^2 + y = xy$.					
	Soit $(x, y) \in \mathbb{Z}^* \times \mathbb{Z}^*$; soit d le plus grand diviseur commun de x et y .					
	Soit $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$ tel que : $x = ad$ et $y = bd$.					
0,5	1- Montrer que si (x, y) est une solution de (E) , alors a divise b .					
0,5	2- En déduire que la seule solution de l'équation (E) dans $\mathbb{Z}^* \times \mathbb{Z}^*$ est $(2,4)$.					
	III. Soit b un entier naturel.					
0, 5	1- Déterminer les restes possibles dans la division euclidienne de b^4 par 10.					
0. 5	2- En déduire que $b^4 \equiv 1 \begin{bmatrix} 10 \end{bmatrix}$ si et seulement si b est premier avec 10.					
0. 5						
	3- Déterminer les deux derniers chiffres de 67 ⁴² .					
	Fin du sujet.					

Partie (3)

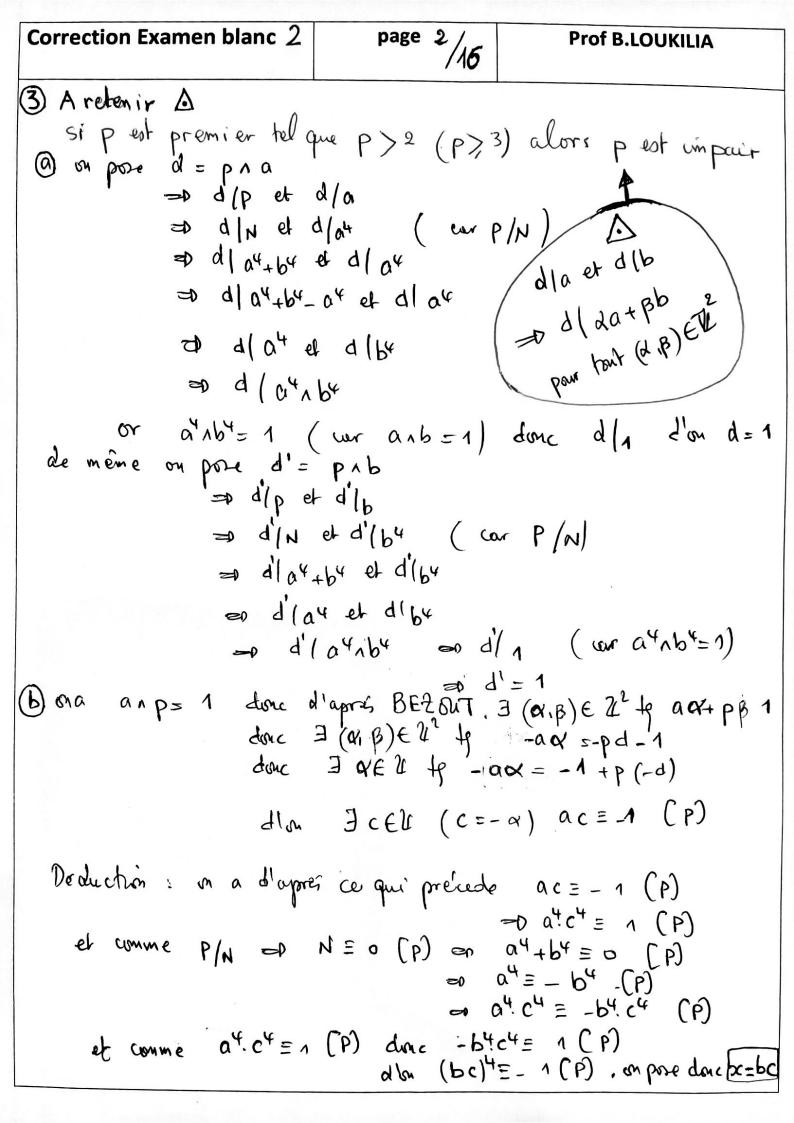
Partie correction

2éme Bac SM

Prof B.LOUKILIA

Bouazzaloukilia@gmail.com

Nr whatsapp 0674631401


Année scolaire 2019/2020

Préparation pour le national 2020 page 1/16

Exerciced (Arithmetique) DSort nEZ, sin est pair donc Ik € 2/: n = 2k. \Rightarrow $n^{4} = (2k)^{4} = 16k^{4} \Rightarrow n^{4} = 0$ [16]. sinest impair donc 3 kEZ: n= (2k+1)4 => n4 = (2k)4+4(2k)3+6(2k)2+4(2k)+1 => n4 = 16 k4 + 32k3+ 24 k2 + 8k + 1 = n4 = 16k4 + 32k3 + 16k2 + 8k2+8k+1 = n4= 16 (k4+2k3+k2)+8k(k+1)+1 et comme 16 (k4 + 2k3 + k2) = 0 [16] et $\forall k \in \mathcal{U}$ k(k+1) est pair donc $8k(k+1) \equiv 0$ (16) $16(k^4 + 2k^3 + k^2) + 8k(k+1) = 0$ (16) $n^4 = 1$ [16) done en conclut que V n ∈ 2 1 14 = 0 (16) on n4 = 1 (16). ona N = a4 +b4 arec a, b Ell et a n b = 1 d'après ce qui précède $a^4 = 0 (16)$ on $a^4 = 1 (16)$ et $b^4 \equiv 0$ (16) or $b^4 \equiv 1$ (16) donce on a $\begin{cases} a^4 \equiv 0 & (16) \\ b^4 \equiv 0 & (16) \end{cases}$ on $\begin{cases} a^4 \equiv 1 & (16) \\ b^4 \equiv 0 & (16) \end{cases}$ on $\begin{cases} a^4 \equiv 1 & (16) \\ b^4 \equiv 1 & (16) \end{cases}$ on $\begin{cases} a^4 \equiv 1 & (16) \\ b^4 \equiv 1 & (16) \end{cases}$ Re con $\begin{cases} a^4 \equiv 0 & (16) \text{ et exclut con } a \land b = 1 \\ b^4 \equiv b & (16) \end{cases}$ Si $\begin{cases} a^4 = 1 & (16) \\ 6^4 = 0 & (16) \end{cases}$ on $\begin{cases} a^4 = 0 & (16) \\ 6^4 = 1 & (16) \end{cases}$ down $0^4 \neq 0^4 = 1 & (16) \\ d_{104} & N = 1 & (16) \end{cases}$ si $\begin{cases} a^4 = 1 & (16) \\ b^4 = 1 & (16) \end{cases}$ donc $a^4 + b^4 = 2 (16)$ d'en N = 2 (16)

on contilutique N = 1 (16) on N = 2 (16)

Correction Examen blanc 2	page	3/1	Prof B.LOUKILIA
		116	
Cama pnombre premiero 2P-2 = x (xP-1	er donc d'u = 0 (p) = 1) = 0 (prés F pour (P)	ERMAT Xº= x (P).
so by so x = 0	(P) =>		
			24 = -1 (P)
			o ne divise pus x
donc d'appres GACISS	P/xP-1_	1	
don	$\chi^{\rho-1} \equiv 0$	1 (P) 0
et comme r est le reste donc 3! q E U f	de la diviru	m end	hidienne de p par 8
ona x4 = -1	(P) >0 =0)	$x^8 = 7$ $x^{89+r-1} = 7$	(P) xr-1 [P) (r+0)
	a)	x P-1 =	x r-1 (P) (2)
de 60 et 62 on t	rouve zer-	1 = 1	(P)
in ona p= 89 +r a	vec 1 < r <	(1	0.7
si rat nuir coid	$r \in \mathcal{I}_{2,u}$	4.61	on oura Dimanha air
(ii) ona p=89+r a il est evident que si r est poir coid contradiction au	ec le fivi	r que	p est premier ovec p) 3
W			(cor p est impair)
donc on doit éliminer	les cas a	ou r	5 3, r = 5, r = 7 (P) absurde car x = -1(P)
SI (= 3 =0 x2 = 1	(P) =0 x	ι ⁴ = 1	(P) absurde car 24=-1(P)
(1 1 5 € 2 x 1 = 1	(p) absum	rde	
si rs 7 = 1 x = 1	(P) -	γ 6 =	- x2 (P) = 1 - 22 = 1 (P)
et comme 27 = -	- 1 (P) S	x4 =	-22 (P) = -22 = 1 (P) 1 (P) absurde [c(c=)r=1]

Correction Examen blanc 2	page 4/16	Prof B.LOUKILIA
Exercice 02 (Complexe Première partie	.)	
$\Delta = (-1)^{2} - 4(1)(1-i) = -1$	3+42 = 1+42.	-4 = 1 + 2(25)+(2i)=(1+2i
donc $\Delta = d^2$ over $d = d^2$ over $d = \frac{b+d}{2a}$ et		
O .	- 01	$\frac{1-(1+2i)}{2} = -i$
(2) (1+i) est solution de (E)	(=) m2 (1+i)2+1	$m^3 (1+i) + 1-im^2 = 0$
on a m = -1 est solution	$40 (4+i) m^3 + 4$ $40 (F) = 60 (4+i)$	
	€0 (1+i	.) m2 (m + 1) = (m + 1) (m-1)=
	⟨m+1	$(4+1)^{2}m^{2}-m+1=0$
(,) 9	(#D M=-	1 ou (1+1) m2-m+1=0
au bese (1+1) mg = m	1 + 1 = 0	\2
D= 1-4(1+	+i) = -3 - 4i = (1)	- 2 i)
$donc m = \frac{1+1}{2}$	$\frac{-2i}{(1+i)} = \frac{1-i}{(1+i)} = \frac{1}{(1+i)}$	$\frac{(1-i)}{2} = -i$
on $M = \frac{1-1}{2(1-1)}$	$\frac{+li}{+i} = \frac{2}{1+i}$	$= \frac{i(1-i)}{2} = \frac{1}{2} + \frac{1}{2}i$
donc la valeurs de m	pour liquel u=	: 1+i soit une solution
de (E) sont -1,	$-\dot{c}, \frac{1}{2} + \frac{1}{8}c$.	
sim = -1, (E): 22-2+1-	- i=0 (=> u=1+i	ω u = - i
s: m = - c , (E): -22+12	+1+i=0 ded u= 1	1-1 et $u+v=-\frac{b}{a}=i$ 1-1 et $v=i-u=-1$
si $m = \frac{1}{9} + \frac{1}{2}i$ (E): $\frac{1}{9}$: 2º + 1 (-1+i).2	$+\frac{3}{9}=0$
≥	1+i et $V=-\frac{b}{a}$	$2 - 4 = -\frac{1}{2}(-1+i) - 1-i$
4) (1=1+1 ft =-	

Correction Examen blanc 2	page 5 16	Prof B.LOUKILIA
3. (a) soit (E). m2. 22 + m3. 2 + 1	- im2 = 0	
dac D= mb-4 m2 (1- = m2 (m4+2 m2	$(m^2) = m^2$	$\left(\begin{array}{c}m^4+4im^2-4\\2\end{array}\right)_{2}$
Θ and ¬ = m (m + 5 i) = = = m (m + 5 m) = m (m +	(81) + (81)	$= m(m^2 + 2i) m + 2$
comme D + 0 granc 51 = -	3 2 m ² 2	a.)
et 2 2=	-m-m(m-	$\frac{n}{2i} = -m - \frac{\lambda'}{m},$
Leme Darke		
9	$\frac{1}{m} = \frac{2m^2+}{m}$	2m-2i+3i
$2(m^2-i)+3i^{\frac{2m}{m}}$	m ² -	i m²-c
$= \frac{2(m^2 - i) + 3i}{m^2 - i}$	2 + m2-i	
donc == = = = = = = = = = = = = = = = = =	= 2 + -	3:
	\$200 *	m2+ m2= 0 (=0 2Re(m2)=
⊕D mª € c lf		
(m) curg (m²)	E II (en) où	$arg(m^2) = -\frac{\pi}{2}$ [2 π]
		$u = arg(4n) = -\frac{\pi}{4} (2\pi)$.
(b) A, B et M sont alignés (D)		
(rei)	Ro (m)= Im	(m) in Re(m) = - Im(m)
	y= n on	y = -x (m = x + iy)
donc l'ensemble des points sont alignées out l'union d ② M' = RCMI = 2' - b = eigne	M(m) pour.	lequel le points A, Bet M
Sont alignées out l'union d	es droits d'e	q: (Δ,) ; y = x et (Δ2); y = -x
@ m' = RCM 0 == e'	£ (5-p)	
€ 5, = 6, ½ (3	ند = ط+ (ط-یا	(2- in)+in=12+1m+in
et comme A'= R(A) dunc	= -im+ i	$\frac{2}{m} + \frac{2}{m}$

Correction Examen blanc 2

page 6/16

Prof B.LOUKILIA

do plus $B' = R^{-1}(M) \iff M = R(B') A \Rightarrow m = ib + \frac{1}{m} + \frac{i}{m}$ $A \Rightarrow Ab' = m - \frac{1}{m} - \frac{i}{m}$ $A \Rightarrow b' = -i(m - \frac{1}{m} - \frac{i}{m}) = -im + \frac{i}{m} - \frac{1}{m}$ $A \Rightarrow b' = -im + \frac{i-1}{m}$

(b) on a $M' = R(M) = M m' = M m + \frac{1}{m} + \frac{i}{m} = i m + \frac{1+i}{m}$

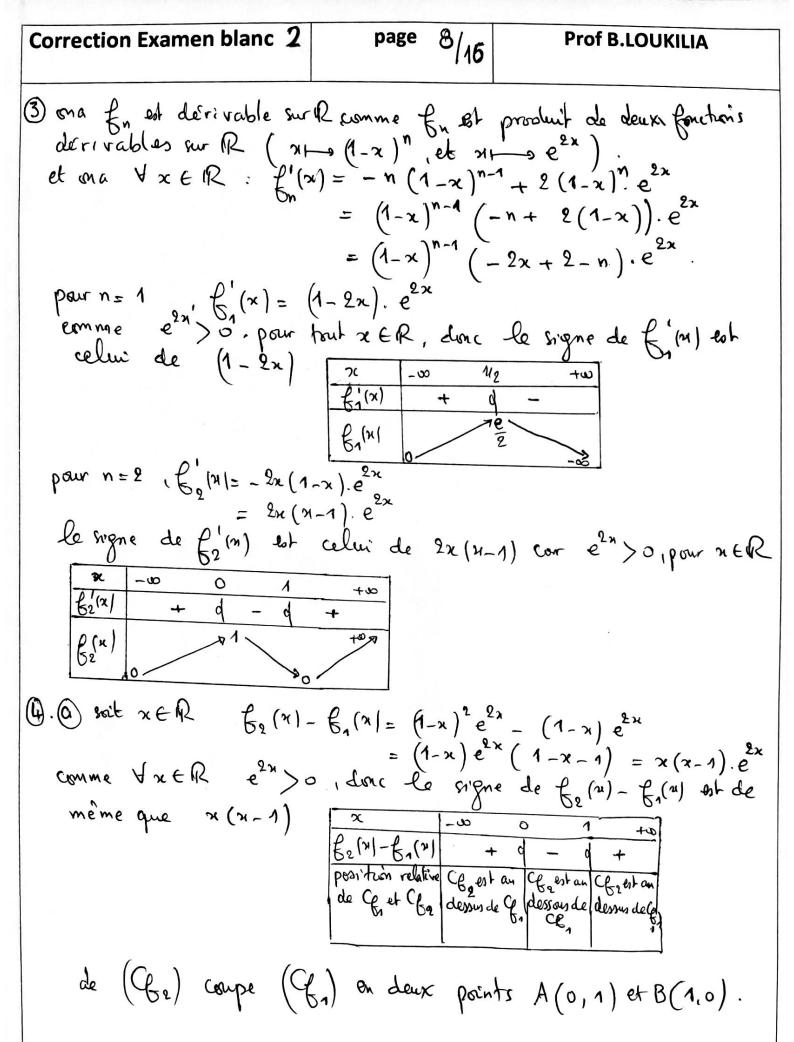
on calcul $\frac{m'+b'}{2} = \frac{im+\frac{1+i'}{m} - im + \frac{i-1}{m}}{2} = \frac{2i}{2m} = \frac{i'}{m} = b$ donc B est letsegment [B'M'].

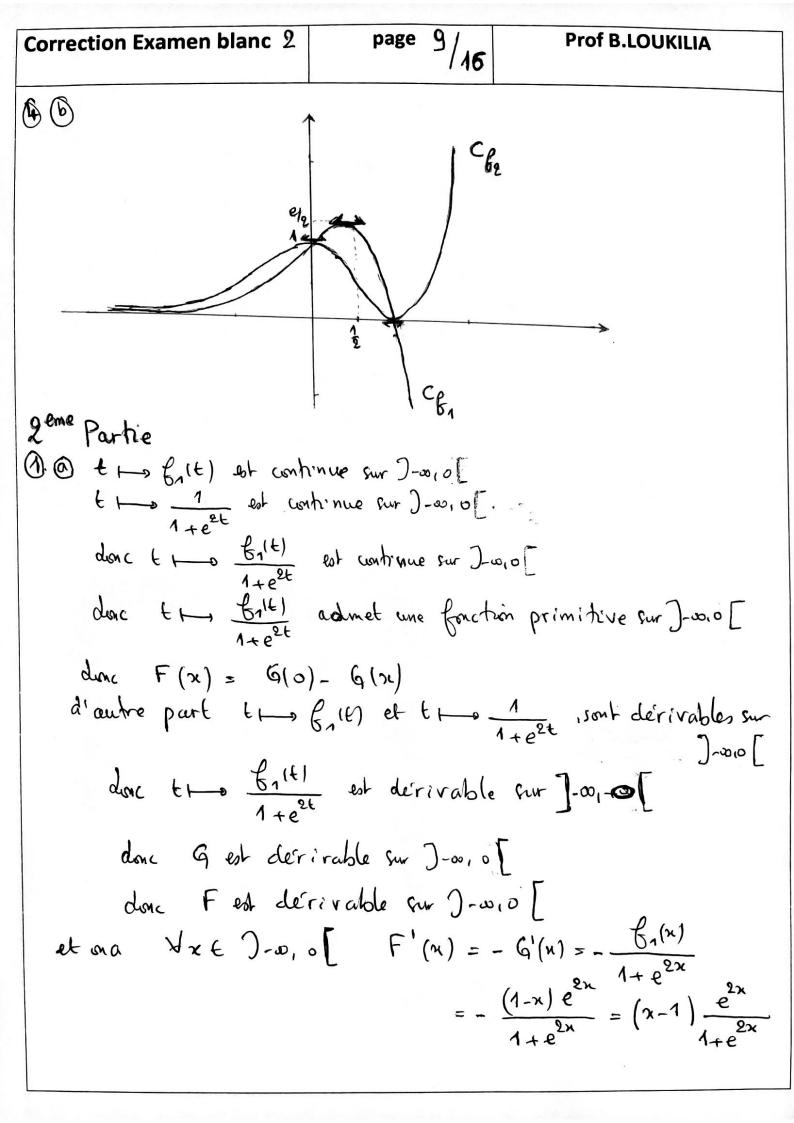
© on a I le milieu de segment [AM], dunc $2I = \frac{a+m}{2}$ donc $2I = \frac{-m - \frac{i}{m} + m}{2} = -\frac{i}{2m}$

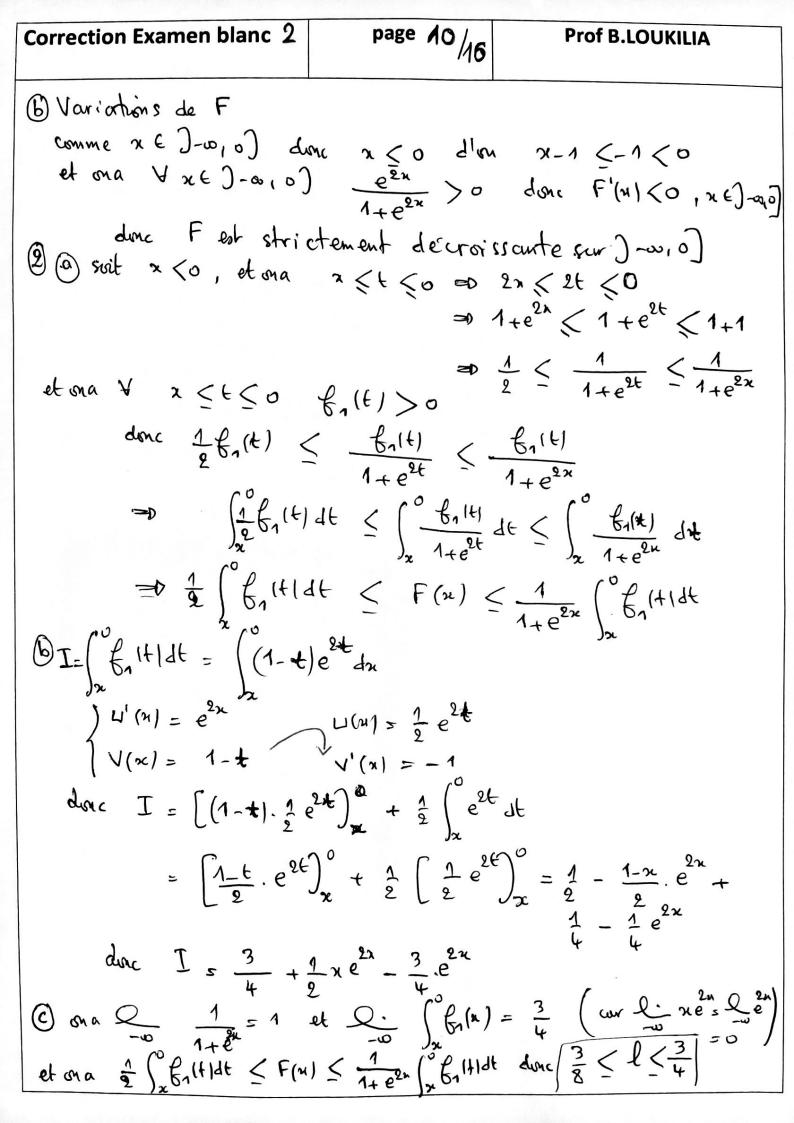
 $\frac{doc}{b-21} = \frac{-im + \frac{c-1}{m} + im + \frac{c}{m} + \frac{2}{m}}{\frac{c}{m} + \frac{c}{2m}} = -\frac{2}{c} = 2i$

et comme li s $\left(2, \frac{\pi}{2}\right)$ dunc $\frac{b'-a'}{b-2\tau} = \left[2, \frac{\pi}{2}\right]$

donc arg $\left(\frac{b'-a'}{b-2T}\right) = \frac{\pi}{2} \left(2\pi\right) et \left(\frac{b'-a'}{b-2T}\right) = 2$

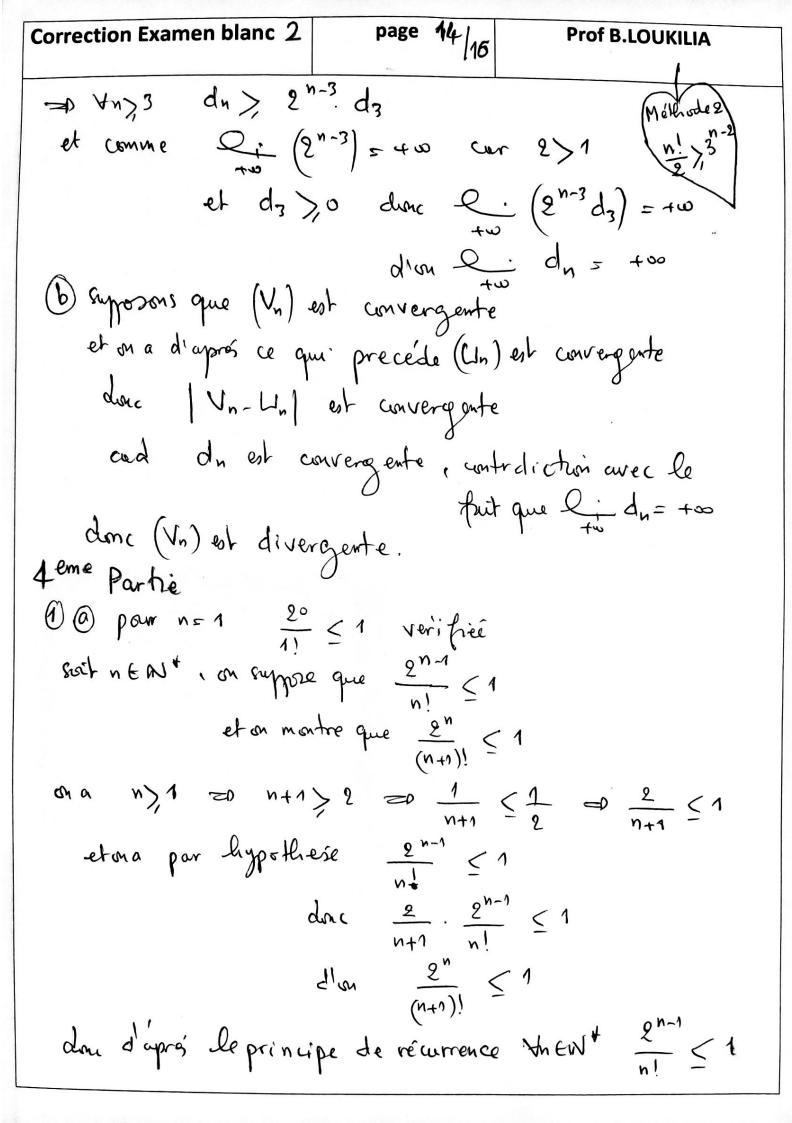

 $= b \left(\overrightarrow{IB}, \overrightarrow{A'B'} \right) = \overrightarrow{D} \left(2\pi \right) \text{ et } \frac{|b'-a'|}{|b-2\pi|} = 2$


= (A'B') \((BI) \) et \(|b'-a'| = 2 \(|b-27| \)


(A'B' = LBI

2

Correction Examen blanc 2 page 7/16 Prof B.LOUKILIA
Problème (Analyse) 1ere partie, soit $n \in \mathbb{N}^d$ $f_n(x) = (1-x)^n e^{2x}$, $x \in \mathbb{R}$ ① $Q := f_n(x) = Q := (1-x)^n e^{2x}$
$= \frac{2}{\sqrt{n}} \left(\left(\left(1 - \chi \right) e^{\frac{2\chi}{n}} \right)^{n} \right) = \frac{2\chi}{\sqrt{n}} \left(e^{\frac{2\chi}{n}} - \chi \cdot e^{\frac{2\chi}{n}} \right)^{n} $ $= \frac{2}{\sqrt{n}} \left(e^{\frac{2\chi}{n}} - \frac{\eta}{2} \cdot \frac{2\chi}{n} \cdot e^{\frac{2\chi}{n}} \right)^{n}$
= 0 (ur li et so et li tet so)
Methode 2; posez $x = n.t$ Colculors \mathcal{L} . $\mathcal{L}_{n}(x)$
si nest poure una $\frac{2}{+\infty}$ $(1-x)^n = +\infty$ et comme $\frac{2}{+\infty}$ $(e^{2x}) = +\infty$ donc $\frac{2}{+\infty}$ $f(x) = +\infty$ Si n est un poure, $\frac{2}{+\infty}$ $(1-x) = -\infty$
of comme $\frac{1}{4\omega} \left(\frac{1}{4\omega} - \frac{1}{4\omega} \right)^{N} = -\omega$ et comme $\frac{1}{4\omega} \left(\frac{1}{2\omega} + \frac{1}{4\omega} \right)^{N} = -\omega$
2) ena $Q = \begin{cases} f_n(x) = +\infty \end{cases}$, Colculons $Q = \begin{cases} f_n(x) \\ f_n(x) \end{cases}$ $Q = \begin{cases} f_n(x) \\ f_n(x) \end{cases} = f_n(x) \end{cases} = \begin{cases} f_n(x) \\ f_n(x) \end{cases} = f_n(x$
Si n est pour $\frac{(1-x)^n}{x} = \frac{(1-x)^n}{x} = \frac{(1-x)^n}{x} = \frac{e^{2x}}{x}$ Si n est pour $\frac{(1-x)^n}{x} = +\infty$, donc $\frac{(1-x)^n}{x} = +\infty$
si nest impair $\frac{1}{1+\infty} \left(1-x\right)^n = -\infty$, donc $\frac{1}{1+\infty} \left(1-x\right)^n \frac{e^{2x}}{x} = -\infty$
donc $\forall n \in \mathbb{N}^*$ $\frac{\int_{x\to+\infty}^{\infty} \int_{x}^{\infty} \int_{x}^{\infty} = \infty}{\int_{x\to+\infty}^{\infty} \int_{x}^{\infty} \int_$



page 11/16 Correction Examen blanc 2Prof B.LOUKILIA n^{3eme} Partie Sout no IN , ona $U_n = \left(f_n(x) dx \right) = \left(f_n(x) = (1-x)^n e^{2x} \right)$ si 0 < x < 1 = 0 1-x>0 et ona e²x>0 \Rightarrow $(1-x)^n e^{2x} > 0$ pour tout $n \in \mathbb{N}^+$ = O ((1-x)". exx >0 = Un>0, pour bout nEN) (b) soit nEN* $f_{n+1}(x) - f_n(x) = (1-x)^{n+1} e^{2x} - (1-x)^n e^{2x}$ = $(1-x)^n e^{2x} (1-x-1)$ $x \in (0,1)$ $\Rightarrow x > 0$ et $x \le 1$ -x'<0 et (1-x) >0 et ex>1>0 = -x (1-x)n. e2x <0 (C) on a YxE (0,1), YnEN* & Bn+1 (21) - Bn(21) < 0 $\xi_{n+n}(x) \leq \xi_n(x) \Rightarrow \int_{0}^{\infty} \xi_{n+n}(x) dx \leq \int_{0}^{\infty} \xi_n(x) dx$ ⇒ U_{n+1} ≤ U_n (2) (a) on a $U_{n+n} = \int_0^1 f_{n+n}(x) dx = \int_0^1 (1-x)^{n+1} e^{2x} dx$ \(u'(n) = e^{2n} $\begin{cases} u'(x) = e^{2x} & u(x) = \frac{1}{2}e^{2x} \\ v(x) = (1-x)^{n+1} & v(x) = -(n+1)\cdot(1-x)^{n} \end{cases}$ $U_{n+1} = \left[\left(1 - \varkappa \right)^{n+1} \frac{1}{2} e^{2\varkappa} \right]_{0}^{1} + \left(\frac{n+1}{2} \right) \cdot \left(\frac{1}{2} \left(1 - \varkappa \right)^{n} \cdot e^{2\varkappa} d\varkappa$

= $-\frac{1}{0}$ + $\frac{n+1}{0}$. \bigcup_{n}

Correction Examen blanc 2	page	12/15	Prof B.LOUKILIA
		7.10	
6 S = (fo fo (n) - fo (n)	dx). x .	11811	
et comme (CG2) est de	sson de (Cf.) su	r l'intervalle (0,1)
donc 4 x 6 (0,1)	Go (4)	< f. (m)
d'un 162 (2	u- 61(21)	= - {	$G_{2}(n) + G_{1}(n)$
de plus [[]][. []][5 4 cm2		
donc $S = 4 \left(\int_{0}^{1} $		\(\frac{1}{6} \) € 2	(u) du)) cma
= 4 (W ₁	- W2) · Cm	12	
et d'après ce qui prése	de Yntin	_* U _" -	$h = -\frac{1}{2} + \frac{n+1}{2} \cdot U_n$
nour n s	1 Ma	M2 2	- 1 + U1
	caid	(1	U2 5 1
on conclut que	5 = 2 cm	2	
3) ona (Un) est de craissent	re dunc Y	new do) (U. / U.
(3) and (Un) est de craissent	donc o (.	- 1/2 + 1/2	$\frac{1+1}{2} \cdot U_n \leq U_n$
dune $\frac{1}{2} \leq \frac{n+1}{2} U_n$	et na	£1. Un	$\leq U_{n+\frac{\gamma}{2}}$
$\frac{1}{n+1} \leq U_n$	et	η+1 .U,	7- Un < 1
note < Um	et (v	1-1) Un	≤ 1
$\frac{1}{n+n} \leq U_n$	et	U, ≤	<u>n-1</u>
due Vn EN #			4
ena 2: 1 = 2 +w			

Correction Examen blanc 2	page	15/15	Prof B.LOUKILIA
Bona Wn = 2n Un et	Yntw	2 11-1	< 1
di	nc YntIN*	<u>8</u> n	\leq . $\sqcup_n \leq 2 \sqcup_n \pmod{\sqcup_n}$
q	me Wn <	2 Un	avec Uns (1-x) " endr
comme o < x < 1 >			Jo
et (1-x)">			$e^{2n} \leq e^2 (1-x)^n$
0.4	en l	$\gamma^{N} \subset \left\{\right.$	1 e2 (1-x) d2
et on a $\int_{0}^{\pi} (1-x)^{n} dx$	dns [- n	1 (1-2	$\binom{n+1}{n} = \frac{1}{n+1}$
dunc Un	< e2. 1	=	$L_{h} \leq \frac{e^{2}}{1000}$
don Un	$\left(\frac{2e^2}{n+1}\right)$		N+1
	W _n ≤ .	V1 7 7	
et comme c.	2e ² =	o da	c C+wh = 0
2 @ ena Wn= 27. Un	dunc 1	\n+1 = -	2^{n+1} . \bigcup_{n+1}
2 @ ena $W_{n+1} = \frac{2^n}{n!} \cdot U_n$ donc $W_{n+1} = \frac{2^n}{(n+n)!}$	$\frac{1}{1}$ $\left(-\frac{1}{2}\right)$	$\frac{n+1}{2}$.	つ ^い)
ے ع	<u>y</u>	- U. =	- 2
(3 -n).e	22) = - 6	24 + 2 ((9.4)! $(\frac{3}{2}-x).e^{2x}$ $(-2x) = 2e^{2x}(1-x)=a.f_{0}$
	= E	(-1+3)	5-27)=(1)

page 16/16 Correction Examen blanc 2 ona W = 21 4 = 2.4 = 2 (1-n) e2 ch = 9 (1 du $s \left(\frac{1}{2} \int_{0}^{\pi} (n) dn = \left(\frac{3}{2} - n \right) e^{2n} \right)^{1} = \frac{1}{2} e^{2} - \frac{3}{2} e^{2} s \frac{1}{2} \left(e^{2} - 3 \right)$, $W_1 = \frac{1}{2} \left(e^2 - 3 \right)$ et $\frac{1}{2} \left(e^2 - \sum_{k=0}^{n} \frac{9^k}{k!} \right) = \frac{1}{2} \left(e^2 - 3 \right)$ just sait n E IN*, on suppose que $W_n = \frac{1}{2} \left(e^2 - \sum_{k=0}^n \frac{2^k}{k!} \right)_{n+1}$ et on montre que $w_{n+n} = \frac{1}{2} \left(e^2 - \sum_{k=1}^{2^k} \frac{2^k}{k!} \right)$ ona $W_{n+n} = -\frac{2^n}{(n+n)!} + W_n = -\frac{2^n}{(n+n)!} + \frac{2}{2} \left(e^2 - \sum_{k=0}^n \frac{2^k}{k!} \right)$ $=\frac{1}{2}\left(e^2-\sum_{k=0}^{\infty}\frac{2^k}{k!}-\frac{2^{n+1}}{(n+1)!}\right)$ $= \frac{1}{2} \left(e^2 - \sum_{k=0}^{m+1} \frac{2^k}{k!} \right) \quad CostiD$ done Yuen Vn= 1 (e2 = 2h) (d) ona Q: Wn = 0 dosc li (e2 - 2 2 2) = 0 $\frac{d' \cdot on \cdot Q_{1}}{L \cdot o} = \frac{2^{k}}{L^{l}} = e^{2}$

Correction Examen blanc 2	page 13/16	Prof B.LOUKILIA
² (n Un), ona ∀	$n \in \mathbb{N}^d$ $\frac{1}{n+1}$	$\leq U_n \leq \frac{1}{n-1}$ $nU_n \leq \frac{n}{n-1}$
et comme Q. n		$=$ $\mathbb{C}(\underline{n})=1$
4 or wholise le princi	pe de recurrence	pour montrer que:
soit $n \in N^{d}$, on suppose q	$\frac{1!}{2^{\circ}} d_1 = d_1$ we $d_n = \frac{n!}{2^{n-1}}$	۵,
et on montre	que d _{n+1} = (n+	$\frac{n!}{n}$ d ₁
ona dn+1 = Vn+1 - Un	$+n = -\frac{1}{2} + \frac{n+1}{2}$	$V_n + \frac{1}{2} - \frac{n+1}{2} \cdot U_n$
	5 n+1 dn=	$\frac{ V_n }{2} = \frac{n+1}{2} \cdot \left V_n - U_n \right $ $\frac{ V_n }{2} \cdot \frac{ V_n }{2^{n-1}} \cdot ch = \frac{(n+1)!}{2^n} \cdot dn$
dunc drappres le princis (B) sna $d_{n+1} = \frac{n+1}{2}$. d_n	pe de récurrence	one AMEN due ni sum du
$ \frac{1}{2} \sin \alpha \alpha_{n+1} = \frac{n+7}{2} \cdot d_{n} $ $ \frac{1}{2} \cdot d_{n} $ $ \frac{1}{2} \cdot d_{n} $ $ \frac{1}{2} \cdot d_{n} $	donc dn+1 dn	$\frac{n+1}{2}$ $= \frac{dn+1}{2}$
done dy > 2 el	ds > 2	$\frac{dn}{dn} > 2$
d'un du du du	$\frac{1}{2^{n-3}} \times \frac{dn}{dn-1} > 2$	x2 x = x 2 (n-3) fois
$\Rightarrow \frac{1}{3}$		

Correction Examen blanc 4 2éme Bac S. M Année scolaire 2019/2020

Préparation pour le national 2020 page 1/14

Exercice 1 (Equations différentielles)

1). on a (E): y'' - 6y' + 8y' = 0donc l'equation coracteristique associé a'(E) est $r^2 - 6r + 8 = 0$ d'on $\Delta = b^2 - 4ac = (6)^2 - 4(1)(8) = 4$ comme $\Delta > 0$ donc $r_1 = -\frac{b + \sqrt{3}}{2a} = 4$ et $r_2 = \frac{-b - \sqrt{3}}{2a} = 2$ donc les colutions de l'eq. diff (E) sont de la forme: $y(x) = x e^{r_1 x} + \beta e^{r_2 x} = x e^{r_2 x} + \beta e^{x} + \beta e^{x}$

On on pose $f[n] = \alpha e^{4\alpha} + \beta e^{2\alpha}$ avec $(\alpha, \beta) \in \mathbb{R}^2$ on a f(0) = 1 \Leftrightarrow $\alpha + \beta = 1$ de plus $f'(n) = 4\alpha e^{4\alpha} + 2\beta e^{2\alpha}$ donc f'(0) = 3 \Leftrightarrow $f(\alpha + \beta) = 3$ d'on les reels α et β vérifient le système $\{\alpha + \beta = 1\}$ $\{\alpha + \beta = 3\}$ $\{\alpha + \beta = 3\}$ $\{\alpha + \beta = 3\}$

donc & (u1 = 1/2 e 4x + 1/2 e 2x.

(b) Comme f est solution de (E) donc f vérifie f''(x) - 6f'(x) + 8f'(x) = 0donc f''(x) - 6f'(x) + 8f'(x) = 0donc f''(x) - 6f'(x) + 2f'(x) = 0 f''(x) - 6f'(x) + 2f'(x) = 0 f''(x) - 6f'(x) + 2f'(x) = 0avec f''(x) - 6f'(x) + 2f'(x) = 0 f''(x) - 6f'(x) + 2f'(x) =

forda = \frac{1}{8}e^{4x} + \frac{1}{8}e^{2x} + c

avec cER

Correction Examen blanc 4

page 2/14

Prof B.LOUKILIA

Exercice 2 (Nombres complexes)

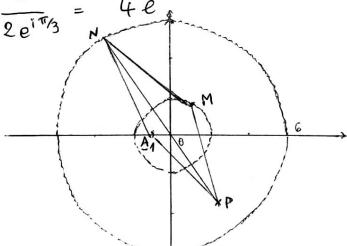
① si x ∈ R*, alors les affixes x, 3 x² et 8 sont des reêls.

donc les points M, N et P sont alignés sur l'axe (0, v). 2 MNAP est un parallelogramme AD MN = PA

$$\frac{2}{2} x^{2} - x = \frac{2}{2} x^{-2} P$$

$$\frac{3}{2} x^{2} - x = -2 - \frac{8}{x}$$

$$\frac{3}{2} x^{2} - x + \frac{8}{x} + 2 = 0$$


$$400 3 x^{3} - 2x^{2} + 16 + 4x = 0$$

donc & est solution de (E) 3) a on a $\alpha = 1 + i \sqrt{3} = 2 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 2 \left(i \sqrt{3} + i \sin \frac{\pi}{3} \right) = 2e^{i \sqrt{3}}$

donc
$$\frac{3}{2} x^2 = \frac{3}{2} \left(2 e^{i \pi_3} \right) = \frac{3}{2} \left(4 e^{2i \pi_3} \right) = 6 e^{2i \pi_3}$$

et
$$\frac{8}{\alpha} = \frac{8}{2e^{i\pi/3}} = 4e^{-i\sqrt{3}}$$

(b)

$$\bigcirc \frac{3}{2} \propto^2 = \frac{3}{2} (1 + i \sqrt{3})^2 = \frac{3}{2} (-2 + 2i \sqrt{3}) = -3 + 3i \sqrt{3}$$

$$\frac{8}{8} = 4e^{-i\pi 3} = 4\left(\frac{1}{2} - \lambda \frac{\sqrt{3}}{2}\right) = 2 - 8i\sqrt{3}.$$

(d) Aff (MN) = 2m-2N = -3+31/3-1-1/3 = -4+21/3

donc Aff(MN) = Aff(PA) => MN = PA

de plus les points ne sont per alignés, donc MNAP est un.

Correction Examen blanc 4	page 3/ ₁₄	Prof B.LOUKILIA
(4) (a) « est solution de (E)	$\Rightarrow \frac{3 \times 3 - 2 \times 3}{3 \times 3 - 2 \times 3}$	+ 4x +16=0.
	=> 3 23 - 2 2	12 + 4 2 + 16=0 (2=2)
		(~) + 4~ + 16=0 (2"=2")
6 d'après ce qui precede	Si MNAP est walls alors a est solut	n parallélogramme ron de (E).
Le solutions de (E) sont solution qui est néces	1+13,1-1	13 et une troisieme
or a n'est pas reiel, si MNAP est un paralle	il en résulte L'hogramme alor	que : s x = 1 + i \(\bar{1} \) on x = 1 - i \(\bar{1} \)
	I-i J3 , MNAT	est em paralle cogramme
Exercice 3 (Arithmetique	re)	
donc d'après le theorem	ne de Fermat	$x^{52} \equiv 1 [53].$
b) soit ken, ona x5	$= \left(x^{52} \right)^{k} \cdot x$	
Exercice 3 (Arithmetique 1) a 53 sot premier et m donc d'après le théorem b) soit ken, on a x^5 on a $x^{52} = 1$ (53) donc $x^{52k} = 1$ (53)	$d \log x^{52k+1} =$	× (53)
(2) on a $(2)^{2} = x^{2}$	ef $261 = 52$	x5 + 1
et comme 2 est pres donc d'après 1)b)	miler ovec 53 $(29)^{29} = 29$	[63]
don	29 est solution	de l'equition (En).
•	et comme d/s	3 donc d/2 (wr 2 = 25
dlan ds 1 ands 2	et comme 2 ne	divise par 53 alors d=1

Correction Examen blanc 4	page	4/14	Prof B.LOUKILIA
B on a x solution de (E) donc x est premièr ave et comme 261 = 5 x 52 =	c53 (d'ap +1 dnc	nes 3) 26^	a)) = x (53) dlupre 1)b)
© x est solution de (En)	d'en (z	261 = 261 =	$2^{9}(5^{3})$ $= 2^{9}(5^{3}) \oplus ((29)^{9} = 261)$
09 (10	= 2	53)	3) 2 . (d'apres' () et (2)
d_{m} ($9^9 = 35$	(53) . de (€₁) alor	-s 20	$= 2^9 (53) (diagnes 3)c)$
et comme (2^9) alors $x^{29} =$	$\begin{array}{ccc} 29 \\ = & 2 \\ 2 & (53) \end{array}$	[53] ((ar 29 et solution de (En))
D/sn x est s con olusion x solud (a) Soit (Eq): 71 x -53 B en 71 x3 - 53 x4 = 21	him de (En =1 3-212 = 1) (ret	$ \lambda \in 2^{9} (53) $
donc le couple (3,4) 6) Merthode (1) soit (u,v) solution de (Ee 2) 71 u - 53v = Hx3 2) 74 (u-3) = 5 20 53 24 (u-3)	1), ma 7 3 - 53 x 4 3 (V-4)	14 - 53	1v=1 et 71x3-53x4=1

```
page 5 /14
Correction Examen blanc 4
                                                  Prof B.LOUKILIA
  et comme 53 n A1 = 1, donc d'apres 6 auss 53/ (U-3)
                             = 0 7 k E' 2 tq u-3=53 k
                              => 3 ker to u= 3+53k
    d'autre purt 71 (U-3) = 53(V-4)
                  → 71 (53k)=53 (V-H), kel
                   BD 71.k = V-4 , k∈ V
                    W= 4+ 31h , ke2
  et comme 71(u-3) = 53(v-4) => 71(u-3) = 53(71.k)
                                  =0 U-3= 53k
                                  → 4=3+53k, kEU
 Kéu proquement 714-53v = 71(3+53k)-53(4+71k) = 1.
   donc (N.V) solution de (E) (D) (V= 4+71k
U= 3+53k | kEV
         dlon S= { (3+53h, 4+71h) | k ∈ 2 }
Methode 2: (E2) 00 HU-53V= 1 D HU-53V= HX3-53X4
                ♣D 71 (U-3) = 53 (V-4)
                €D 53/71(U-3) et 74(U-3) = 53(V-4)
 et puis que 53 n 71 = 1 donc d'après 9 couss 53/U-3
  dlan (E2) +> FREEL U-3 = 53k et 71 x 53k = 53(V-4)
             € 3k∈2 U= 3+53k et V= 4+71k
   elc S= {(3+53k, 4+71k) | ke2(5
6) Sale x & 2
  \begin{cases} x = 34 & (71) \\ x^{2} = 2 & (53) \end{cases} \Leftrightarrow \begin{cases} x = 34 + 314, 4 \in \mathbb{Z} \\ x = 35 & (53) \end{cases} \Leftrightarrow \begin{cases} x = 35 + 534, 4 \in \mathbb{Z} \\ x = 35 & (53) \end{cases}
    donc, 714 - 53 v = 1, donc (U, v) est solution de l'eq. (E2).
 Par suite il existe kEll to 2 U= 3+53k
  tinsi n = 34+71 (3+53k) = 247 + 3763k, k & 2
 Kerciproquement si n= 247+3763k, kell alors
                       \alpha = 11 \times 3 + 34 \times (53k) = 34 \cdot (71)
  CIC S= { 247+3763k | k + 21 }
```

	_		
Correction	Examen	blanc	4

page 6/14

Prof B.LOUKILIA

Probleme (Analyse). Partie (1)

(1) Sect
$$x \in J-1$$
 (0) $UJo_1 + w [$

$$\frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt = \frac{1}{x^2} \int_0^x \frac{t^2-1+1}{t+1} dt = \frac{1}{x^2} [\int_0^x \frac{t^2-1}{t+1} dt + \int_0^x \frac{1}{t+1} dt]$$

$$= \frac{1}{x^2} \left[\int_0^x (t-1) dt + \int_0^x \frac{1}{t+1} dt \right]$$

$$= \frac{1}{x^2} \left[\left(\frac{1}{2} t^2 - t \right)_0^x + \left[\ln |t+1| \right]_0^x \right]$$

$$= \frac{1}{x^2} \left(\frac{1}{2} x^2 - x + \ln(x+1) \right) = \frac{\ln(x+1) - x}{x^2} + \frac{1}{2}$$

si -1 < 2 < 0, et soit EE [410] x < t<0 =>0(x+1 < +1<1

$$= 0 \qquad 1 \leq \frac{1}{6+1} \leq \frac{1}{n+1}$$

$$= \sum_{k=1}^{\infty} \left\{ \frac{t^2}{k+1} \right\} \left\{ \frac{t^2}{n+1} \right\}$$

$$\frac{1}{20} \int_{x}^{2} \left(\frac{1}{t+1} \right) \left(\frac{1}{n+1} \right) dt \leq \int_{x}^{2} \frac{t^{2}}{t+1} dt \leq \int_{x}^{2} \frac{t^{2}}{n+1} dt$$

$$\Rightarrow \int_{0}^{\infty} \frac{t^{2}}{n+1} dt \leq \int_{0}^{\infty} \frac{t^{2}}{t+1} dt \leq \int_{0}^{\infty} t^{2} dt$$

$$= 0 \quad \frac{1}{3} \frac{\chi^3}{(\chi+1)} \leq \int_{-\frac{\pi}{2}}^{\chi} \frac{t^2}{t+1} dt \leq \frac{\chi^3}{3}$$

$$\frac{1}{x^2} > 0 \qquad \frac{1}{x^2} \cdot \frac{1}{3} \cdot \frac{x^3}{x+1} \leq \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt \leq \frac{1}{x^2} \cdot \frac{x^3}{3}$$

$$\Rightarrow \frac{x}{3(n+1)} \leq \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt \leq \frac{x}{3}$$

de même si $n \in J_0$, two [on trave $\frac{n}{3(n+1)} \leq \frac{1}{2^2} \int_0^n \frac{t^2}{t+1} dt \leq \frac{n}{3}$

conclusion d'ut D-110 [U)0, to [on à l'inequalité souhaitéé.

Correction Examen blanc 4

page 7/14

Prof B.LOUKILIA

Soil n>-1 et n≠0

on a d'après ce qui precède

$$\frac{x}{3(x+1)} \leq \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt \leq \frac{x}{3}$$

 $\frac{3(n+1)}{3(n+1)} \leq \frac{\ln(n+1)-n}{n^2} + \frac{1}{2} \leq \frac{n}{3}$

$$\left(\begin{array}{c} u + 1 \\ u^{2} \end{array}\right)_{0}^{\infty} \frac{t^{2}}{t+1} dt = \frac{\ln(n+1) - n}{n^{2}} - \frac{1}{2}$$
question (1)

 $= \frac{n}{3(n+1)} - \frac{1}{2} \leq \frac{\ln(n+1) - n}{n^2} \leq \frac{n}{3} + \frac{1}{2}$

et comme $\left(\frac{n}{3}+\frac{1}{2}\right)=\frac{2}{n\rightarrow 0}\left(\frac{n}{3(n+1)}+\frac{1}{2}\right)=\frac{1}{2}$

donc $\frac{\ln(x+1)-x}{x^2} = \frac{1}{2}$ (theorems des gendarmes)

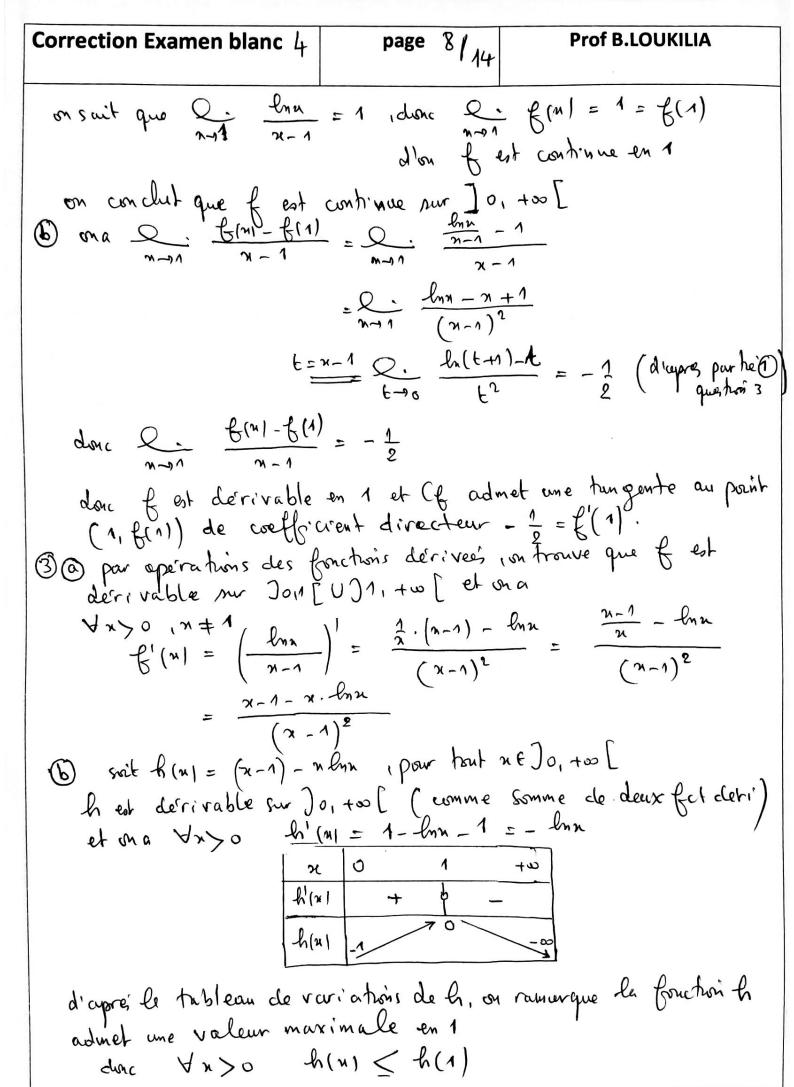
€ ona 2: (n-1) = -1 et 2: lnn = -00, donc 2: 6M = +00

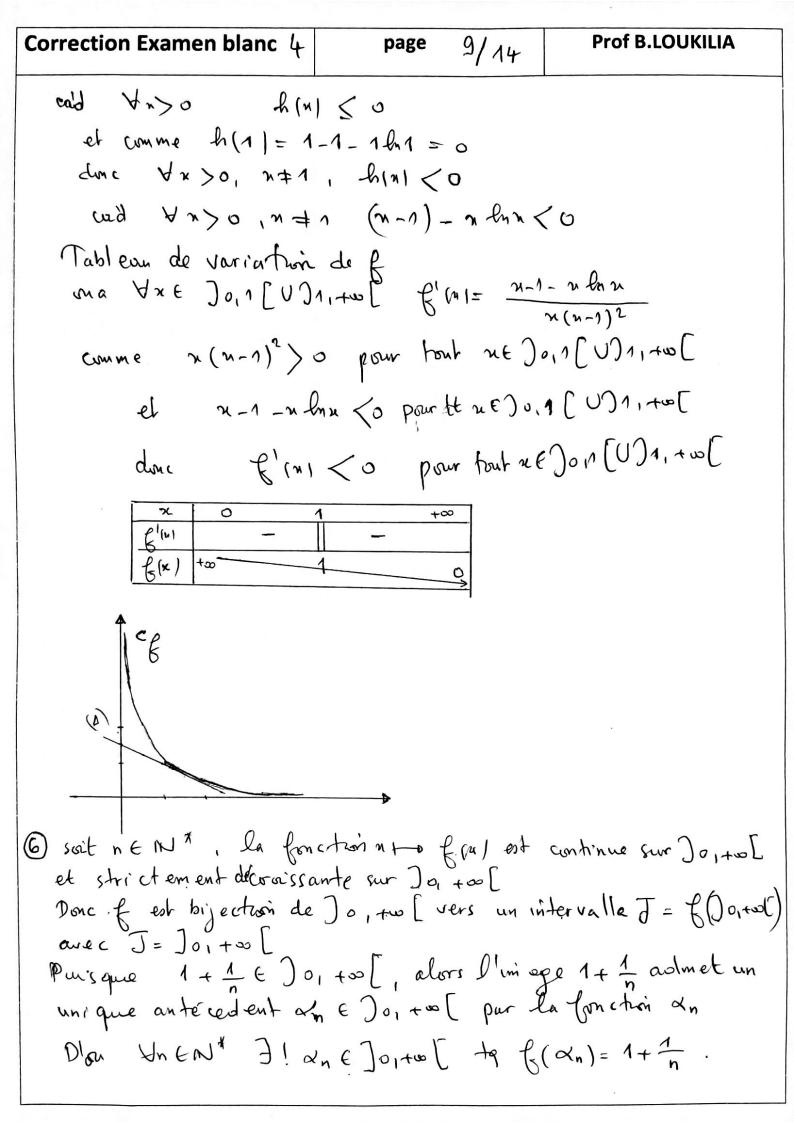
d'autre part $\frac{1}{100}$ $\frac{1$

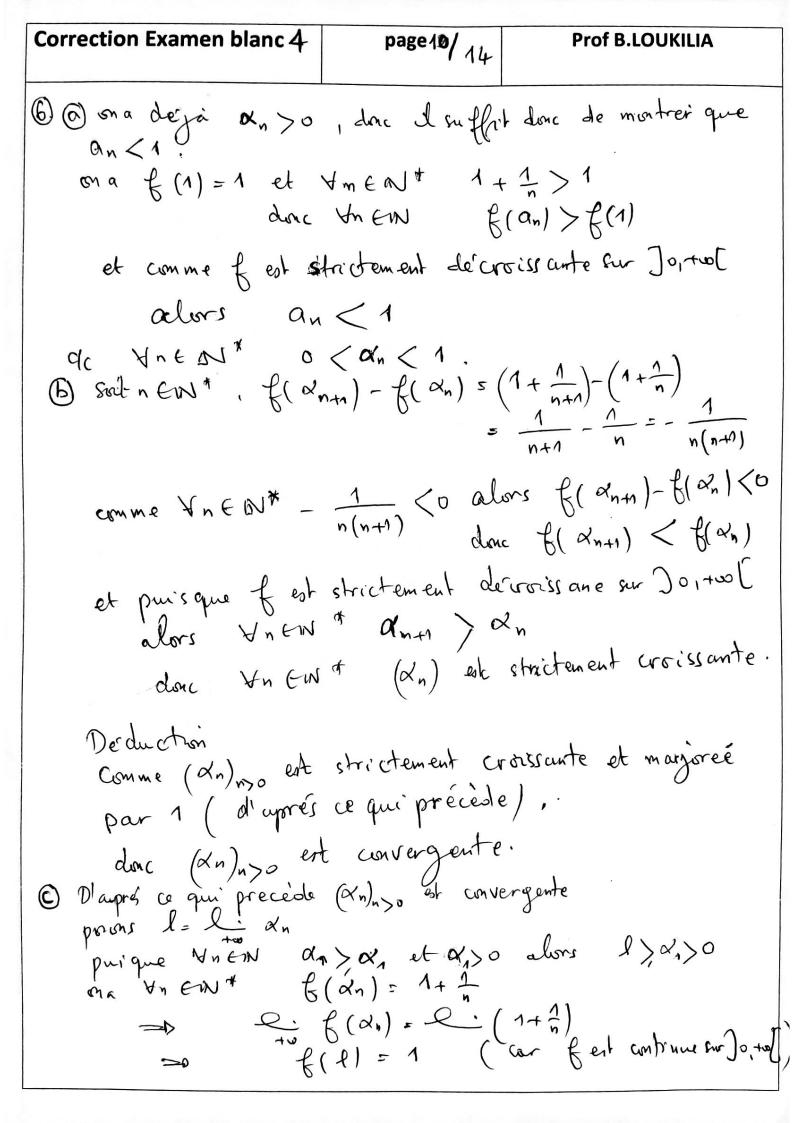
Interpretation geometrique

Lif(u) = + 0 Cf admet une asymptote verticale d'eq: n 50

2 = B(m1 = 0 = Cf admet une asymptote horizontale d'eq: y=0

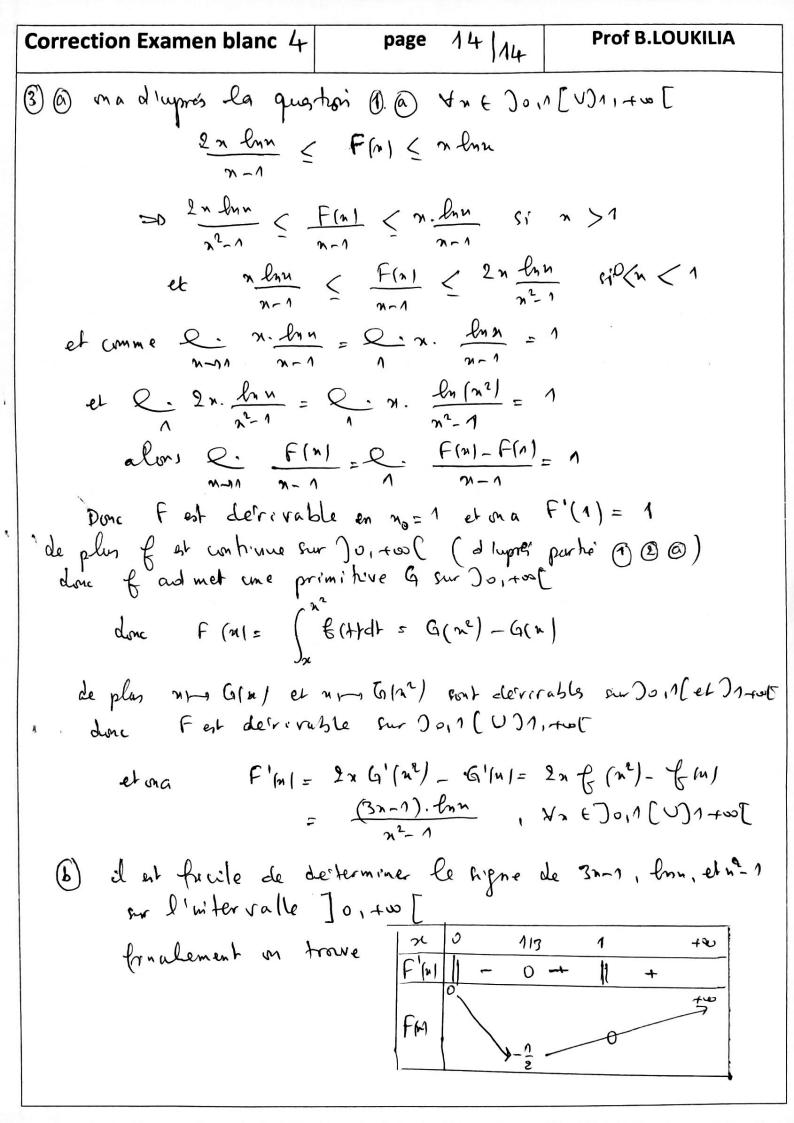

an vorsinage de +0


20 ona no finn est continue sur 20,1 (U)1,40 (et no n-1 est continue sur 20,1 (U)1,40 (


de plus n-1 +0 pour tont nE Joi1[1]1,400[

donc f'est continue sur Doin[UD1, +w[(par opération)

Etudions la continuite de f en 1.



Correction Examen blanc 4	page 11/14	Prof B.LOUKILIA
1 P(.) A 1		lines l = 1
et comme $f(n) = 1$ ent	Est singective	leave X Z .
et comme $f(n) = 1$ ext D'au Di (dn) = 1 D'après la première	parhè, on sait que	$\frac{Q}{\gamma \to 0} \frac{\ln(\gamma + 1) - \gamma}{\gamma^2} = -\frac{1}{2}$
sion pose t = x+1	on trouve Q.	$\frac{\ln(t) - (t+1)}{\ln(t) - (t+1)} = -\frac{1}{2}$
sion pose $t = x+1$ of possions $\varphi(t) = \frac{-\ln t}{2}$	$\frac{1-(t-1)}{(t-1)^2}+\frac{1}{2}$	pour but t>0
=> ln(t)=	$(t-1) - \frac{(t-1)^2}{2} + ($	(t-1)2 (t)
si t-01 m aura c disac Y t>0, t +1	f (f) -00 Ma f (f)= 1	- t-1 + (t-1).pit)
en particulièr Vn:En	JA ((0:n)= 1	+ dn-1 + (dn-1). 4 lan 1
	$4\pi 1 + \frac{1}{\pi} = 1$	$+\frac{\alpha_{n-1}^{2}}{2}+(\alpha_{n-1})\cdot \gamma(\alpha_{n})$
	€ n (1-dn)=	
	3) C: n(1.	$-\alpha_n = \frac{1}{1} \left(\frac{1}{\frac{1}{2} - \varphi(\alpha_n)} \right)$
	=> C: (n(1	
Déduction	(car -	Q. ((dn) = Q. (k) = 0)
on a f (dn) = 1+1=1>	ln(dn) = (dn-1)	$\left(1+\frac{1}{n}\right)$
	$n \in N(\alpha_n) = n$	(" (7) /
→	$ln(\alpha_n^n) = n$	$(\alpha_{n-1})(1+\frac{1}{n})$
	\Rightarrow \forall n = e	
et comme 2. n (1.	~ ~) (4-1) = 2-> ·	n(< n-1) = - 2
et la fonction n'est	e ast continue -	en - 8 chonc
	- (x,") =	$e^{-\frac{1}{e^2}}$

Correction Examen blanc 4 page 12 | 14 Prof B.LOUKILIA Partie 3 1 € sait mt Join[1)1,400[si x &] 0,1 [= 0 0 < x < 1 =0 0 < x2 < x ma yte (na,n), x2 < t < x et comme f est de croissante alors for) < f(E) < f(u) so light of fitted fitted $= \int_{x}^{x} f(u^{2}) dt \leq \int_{x}^{x} f(u) dt \leq \int_{x}^{x} f(u) dt$ $\Rightarrow (x^2-x). \ f(x^2) \leq \left(f(t)dt \leq (x^2-x). \ f(x) \right)$ $\left(x^{2}-\mu\right), \quad \frac{2 \ln n}{x^{2}-n} \leq F(\mu) \leq \left(x^{2}-\mu\right), \quad \frac{\ln n}{n-1}$ $\frac{2 \pi \ln n}{x+1} \leq F(n) \leq x \ln n$ Si $n \in \int 1 + \infty \left(\cos \alpha + n > 1 \Rightarrow n \right)$ de même pour t E [x, x2] on trouve l'inegalite demander elc Vx & Join [U)nito[2n long < F(n) < n.long b una d'appror ce qui precede ∀x € Joi1 [2n lnn ≤ F(x) ≤ x lnn et comme Q: 2 mbn = Q: (nbn) = 0 donc d'apprès le lheoreme des gendarmes C. F(n)= 0 = F(0) d'un F'est un tiene à droite au point 0. de plus tre Join [F(n) < lonn et comme ? lan=-00 donc Q: F(N) = -00 and Q: F(N) = -00 donc (CF) admet une demi tangente verticale en (0, Fio)) diviger]

Correction Examen blanc 4	page	13/14	Prof B.LOUKILIA
20 soit n>1, et E E [n.	na) on th	< h < n²	
	e bux	< Int <	bun2 (car la et 1) sur) o, to[
- A. ¹			
		~ ~	$\frac{1}{n} \leq \frac{\ln n^2}{t-n} (t>1)$ $t \leq \int_{2}^{n^2} \frac{\ln n^2}{t-1} dt$
et on a $\int_{x}^{x} \frac{1}{t-1} dt =$	[ln t-1]) n s ln n	2-11- ln n-1 = ln (n+1)
et on a $\int_{\pi}^{\pi} \frac{1}{t-n} dt = \frac{1}{2} \int_{\pi}^{\pi} \frac{1}{t} dt$	$\frac{\ln u}{1-1}$ at $\leq \int_{x}^{h}$	Int dt <	In hi dt
	$ h(x+1) \leq 1$		
29 lmn	. In(n+1) < F	- 1×1.5 2	lnn. ln (n+1)
(b) on a Yn> 1 F(n) >	In (ne). In(n+	1-+00	
et comme Right alors pour c	um parowson o	n frame	10 ←(x)= +00
de plus 4n>1 lm	· ln(n+1) ≤	F(u) \le '	2 hn. h (n+1)
=n /n	$\frac{x}{x}$ $\frac{x}{x}$ $\frac{x}{x}$ $\frac{x}{x}$	Fini <	2 <u>lnn. ln(n+1)</u>
Colarlors Q. Inx.	ln(n+1)		
ona Qi lan. la (m-	tol = Q. 2	-brita, 2-	Pn (m+1). In+1 In+1. In
	= 0 × 0	×1 / cor	Q. Int =0
	= 0	اعا	$\frac{2}{40} \frac{\ln t}{t} = 0$ $\frac{1}{10} \frac{1}{10} = 0$ $\frac{1}{10} \frac{1}{10} = 0$
donc Qi F(n)	= 0		
d'un (CF) admet une l'axe des abscrisses	branche par	-ab oliqu	e diregéé vers

Simili Mai 2019

g: t - oet

* f antime sur J-00,0[done admet me primitive. Gy sur J-00,0[

· ∀ n ∈ Jo11[0 < 2n < 1 lun /lut /o luln < lu1=0

donc dun et luan E]-00,0[

4xc] 012[F(n)= Gy(lu2n)-Gy(lun)

In detailed our Jo, 1 [h (Jo, 1 [)=] ~, luf[c]-0,0[etv:n - luen derivable sur Join Composer.

er M(]017[) =]-0,0[

et Gy Laivable Sur]-0,0[

Donc F derivable sir Jos E[

* f entinue sur JoHOE done oudmet une primitive GaberjoHOC ∀x ∈] 1, + 00 [] lux > 0. = lun; lulu E Joir De (

F(n) = G2 (lulu) - G2 (lun)

u: n-vlun derivables our v: x-v luan] 1,+00 [G2 decivable sur Jo1+00[et M(J1+0E)=J0,+00(et V(J1,+00E)=] lu 2,+00 [c]0,+00 [Done 1-0 Gr (ludy) et no Gr (lux) sont decivable sur] 1 Harl of ou F decivable sur Js, too[

b)
$$\forall x \in]0; 1 [F(x) = G_{1}(\ln 2x) - G_{2}(\ln x)]$$
 $F'(x) = G'(\ln 2x) \times (\ln 2x) \times (\ln 2x) - G'(\ln x) \times (\ln x)]$
 $= \frac{f(\ln 2x) - f(\ln x)}{h}$
 $= \frac{f(x) = \frac{f(\ln 2x) - f(\ln x)}{h}}{h}$
 $= \frac{f(x) = \frac{f(\ln 2x) - f(\ln x)}{h}}{h}$
 $= \frac{f(x) - \frac{f(\ln x) - f(\ln x)}{h}}{h}$
 $= \frac{f(x) - \frac{f(\ln x) - f(\ln x)}{h}}{h}$
 $= \frac$

rae Joit(v) 1,+or(n < t < on => lun < lut < lulx

=> luon dut dun

2 < 2n => 1 | 22 dt < 1 dt < 1 full =) 1 [t] x & F(n) & 1 [t] x

 $\Rightarrow \frac{1}{2n-\kappa} \left(2n-\kappa \right) \leq F(\kappa) \leq \frac{1}{2n} \left(2n-\kappa \right)$

 $\Rightarrow \frac{\lambda}{\ln 2n} \leq F(n) \leq \frac{n}{\ln n}$

30) a) tre Joit (n < F(x) < n

) $n \cdot pot$ lusu = 0 $n \cdot pot$ lusu = 0 $n \cdot pot$ lusu = 0 $n \cdot pot$ lusu = 0 done Fantine à duvile en 0

b) tre] piz[n· c F(x) < x el n > u

 $\frac{1}{\ln 2n} \leq \frac{+(n)}{n} \leq \frac{1}{\ln n}$

I him then = 0 =) $\frac{1}{1-0} = \frac{F(x)-F(0)}{x-0} = 0$

Done Férivable à droite en 0 et F(0) = 0

c) tre] 1,+0 [. (x=2n) 1 -0+00 lu9n = x-0+00 2 lux = +00 => lu F(x) = +00 men < F(n) < n lun trel litol luen < F(n) < 1 lun =) h= F(n) = 0 Dinc (Cf) admet me tranche parochalique de ducetion (o'z) on voisinage de + 00 40) u(t) - 2-26+lut. t [] 0,1] u continue sur Joi 1 I · m(ct)=-2+1=1-26> 0 466]012[Done u strictement evissante sur Jo, & I d'un u bojection de Joite[sur u(Joite) M(Jo, 2[)=] = u(n); l- u(E) [=]-00, 1-42[0 ∈ J-00,1-lue[donc] d ∈ J0,1[! u(d)=0 u'(t) = 1-2t < 0. => u strictement decrossante 4 t E [2,1] Aur [1,1]

tt∈[ok, 1] | t > d | u croissonte our [α, 1] れ(n) > は(d) コロ => 以(t) > O VEE [1,1] } t ≤ 1 [u decraissante sur [7,1] =) M(t) > M(1) = 0 => M(t) > 0 d'in + t∈[~,1] M(+) >0 b) tx6 [d,1[d < 2 < 6 < 2n < 6 =) u(t) > 0 => 1-2t + lut 20 lut > 2t-2 $=) \frac{1}{\text{lut}} \leqslant \frac{1}{2t-2}$ 29(2n =) $\int_{x}^{2x} \frac{1}{lut} dt \leq \int_{x} \frac{1}{2t-2} dt \quad \forall x \in [d, \frac{1}{2}[$ c) on a $\int_{1}^{2m} \frac{1}{2t-2} dt = \frac{1}{2} \int_{1}^{2m} \frac{(t-1)!}{t-1} dt = \frac{1}{2} \left[\ln |t-1| \right]^{2m}$ $= \frac{1}{2} \left(\ln |2n-1| - \ln |2-1| \right) = \frac{1}{2} \ln \left| \frac{2n-1}{n-1} \right|$ L-1 = 0+ =) li 1 lu | 2n-1 | =- 00. et $F(x) \leq \frac{1}{2} \ln \left| \frac{2u-1}{x-1} \right|$ some $\lim_{x \to 1} F(x) = -\infty$

5)
$$h(b) = h(b) = h(b)$$

EX 2 1) f(n)=lun-autoux (En): f(x): m T In et arctan sont antima sur Just 2014 sol some of continue any bissol VN>0 f'(2) = 1/N - 1/1×2 = 1/1×2 le higne de f'(1) sois colon de n2-x+1 can x(1+x2)>0 D=1-4=-3(0 => f'(a)>0 d'on of studement consmile Dur Joita [done of hijectum de Joita [dur f (Joit w) f(Jo1+00[) = Jh. po+ f(n); le f(n)[= 1R MAER alone 3! xn & Joi+ oo [: f(xn) = m TI d'an. l'eq (En) admet une soule solution un dans Joiton [20) (4nEN) {(enT) = lu enT - Archan mT = nT- anctan mT1 ona MTIZO => arctan nTIZ arclano: a =) MTT- anchan mTT & nTT =) f(ent) < f(an) et f st Parcifornac => en < 2n ona | xn7 em7 | = +00 | N ++00 30) f(xn) = m Ti (=> lu (nn) - anchou (xn) = lu (en T) =) lu(nn) - lu en = anetan (nn) = $\frac{\ln\left(\frac{2n}{e^{n}}\right)}{e^{n}} = \arctan\left(\frac{n}{e^{n}}\right)$

Ma:
$$(\forall n \in \mathbb{N})$$
 le $(\frac{\pi_n}{e^{nT}})$: $anchen(\pi_n)$
 $= \frac{\pi_n}{e^{nT}} - e$
 $= \frac{\pi_n}{e^{nT}} -$

Done (I, J, K) at me famille libre

(11)

D'on (I, J, K) et me base de E

formarque dim E = 3 2°) a) $K^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

b) + (a,b,c,d,e,t) EIR6

H(a,b,c) × M (d,e,t) = (e a b) × (o t d)

0 0 0 0 0

= { cf cd+af cc+ad+bf } cd+af } cd+af

= M (cd+af; ce+ad+bf; ef) E E

Con (cel+af; ce+ad+bf; cf) ER3

d'on E et une partie stable de (M3 (IR); X)

3°) jona (E1+10) est un espace vectoriel réel donc (E1+10) est en groupe commutatif

in) E partie stable de (M3(R); X) et x associative dans M3(R) Junc X associative dans E

ii) I est l'element neutre dans (M3(IR), X)
et I = M (0,0,1) E E dans I est l'element neutre
olans (E;X)

```
W + (a,b,c,d,e,B) E IR": H(a,b,c)xM(d,ef).
                                                   (12)
                  = M(cd+af; ce+ad+bf; cf)
= M(fa+dc; fb+da+ec; fc)
                   = M(dieif) XM (aibic)
     duc x commutative dans E
 et x destributive par report à + dans M3(1R), x)
   Donc x est distributive par raffort à + dons E
De i), ii); (mi); iv) et J) on en deduit que
    (E,+ix) est un annevau commutatif unitaire
 Ona K2= Oz et K + Oz donc Kest un diviseur
   le zero dans (E1+1x) d'on l'anneau (E1+1X)
    n'est pas integre.
  (Remanque (E,+,x) n'est pas en corps cor un corps est un annéan entegre.)
 40) Ma = M (a; 1 a2; 1) G = { Ma /a ER}
           f, R-, G
  a) Y (a, 6) ER2 f(a+b) = Ma+b
    (a) x f(b) = MaxMb = M(a, 2a, 1) x M(b; 2b, 1)
dapas 2°)6) = M(b+a; 262+ab+202; 1)
               = M(a+b; 1 (a+b)2; 1) = Ma+b = f(a+b)
```

d'un f sor un homos phisme de l'Rit) vers (EIX)

(13)

· Y(a, b) EIR2 f(a)=f(b) => Ma = Mb

$$= \frac{1}{(a + \frac{1}{2}a^{2})} = \frac{1}{(a + \frac{1}{2}$$

=)
$$\begin{cases} a = b \\ \frac{1}{2}a^2 = \frac{1}{2}b^2 \end{cases}$$
 => $a = b$

due f injective

b) (IR,+) groupe commtatif donc (G,K) est un groupe & 1 60ms phisme de (IR,+) sur (G,K). Commtatif.

c) le symétrique de a dous (Ri+) est-a donc

le symetrique de f(a) sol f(-a) dans (Gix)

D'on Ma = Ma

$$\frac{EX4}{2 \text{ whe } A} \qquad (E) \quad \frac{2^{2} - 42 \text{ cos}(\frac{20}{4})}{6 \text{ et}} e^{\frac{1}{4}} + 4e^{\frac{1}{4}} e^{\frac{1}{4}} = 0$$

$$0 \text{ et} = 0,271$$
a) $\Delta = 16 \text{ cos}(\frac{30}{4})(e^{\frac{1}{4}})^{\frac{1}{4}} - 16e^{\frac{1}{4}} = -16e^{\frac{1}{4}} = 0$

$$= -16e^{\frac{1}{4}} \left(1 - \cos(\frac{30}{4})\right) = -16e^{\frac{1}{4}} + 4e^{\frac{1}{4}} = 0$$

$$= \left(4 \text{ cos}(\frac{30}{4})e^{\frac{1}{4}} - 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} = 0$$

$$= 2e^{\frac{1}{4}} \left(\cos(\frac{30}{4}) + ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} = 0$$

$$= 2e^{\frac{1}{4}} \left(\cos(\frac{30}{4}) + ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} = 0$$

$$= 2e^{\frac{1}{4}} \left(\cos(\frac{30}{4}) + ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} = 0$$

$$= 2e^{\frac{1}{4}} \left(\cos(\frac{30}{4}) + ie^{\frac{1}{4}} + 4ie^{\frac{1}{4}} + 4ie$$

```
Exercia 4: Partie B
             RA)=B & b=ett==i=
              て(6)=17' 白 ま= 6+3でで = エモ+1-ト
                           ⊖ 2'= ¿豆+1-i
                                                    on pook 2= x+iy (xiy) GR?
       20) f(M(2))=M @ Z=12+1-i
                      € x+14 = i(x-14)+1-i
                     ( x+iy-ix-y=1+c=0
                     (=) (x-y-1) - i(x-y-1)=0
                      (=) 2-y-1=0
          Dunc l'ensemble des posuls invariants par f out la shaite (D)
        d'equation: (D): x-y-1= 0 Le vecteur duecteur W (1,1)
   b) \frac{2^{1}-2}{1+i} = \frac{(i\overline{2}+1-i-2)(1-i)}{(1+i)(1-i)} = \frac{i\overline{2}+\overline{2}-\overline{2}+i\overline{2}-2i}{2}
                   [1+i)(1-i)
                 = \frac{1(2+\overline{2})-(2-\overline{2})-2i}{12Re(2)-2iIm(2)-2i}
                  = i(Re(2)-Im(2)-1) EIR
             Line my HI L W?
                                          (3=1+i)
     () Sort I milieu de [MH/]
             27 = 2+2/ = 2+6 2+1-6
                     = \frac{x+y+1}{2} + \lambda \frac{x+y-1}{2}
           x_{I} - y_{t} = 1 = \frac{x + y + 1}{2} - \frac{x + y - 1}{2} - 1 = \frac{x + y + 1 - x - y + 1 - 2}{2} = 0
         Dunc I E (D)
          d) (MM') I (D)
             I milieu Le [M M'] ED
             Lunc for la symétrie orthogonale d'ake (D)
                                 Exercice 5
     Partie A
                k premier Fernat \begin{cases} 5^{k} = 5 \ [k] = 5 \end{cases} = 5^{k} 2^{k} = 3 \ [k]
                     5^{k}-2^{k} \equiv 0 \quad (k) \Rightarrow 3 \equiv 0 \quad (k) \Rightarrow k/3
\begin{cases} k \text{ premier} \\ 3 \text{ plemier} \end{cases}
       20) Sik) 3 d'après 1º) k ne divise pas 5 k-2 k et k premier
           denc Kn (5k-2k)=1
```

```
(5 = 2 ) (5 = 29) = 6 Lpg)
    Lastre B 3 < p < 9
2.) p=3 \Rightarrow 39/9 \times 13(5^9-2^9)

\Rightarrow 9/3 \times 13(5^9-2^9) \Rightarrow 39(5^9-2^9) \equiv 0 [9]

5) 3=p<9 \Rightarrow 19 \land 5^9-2^9=1 (2'april. 20 parties)
          (q13=1
          => 9/13 => 9=13 (9 premier et 13 premier)
20/ p)3 => p>5: Lip=5
                                   5/(5 5- 25)(59- 27)
              55-25=-25(5) => 5/29+5 15/2 Cu
                                                       Cultadiden
             59-29 = -29 (5)
          dunc p $ 5 => p>5
P) 5 7 P 1 (5 - 2 P) = 1 (d'apris 2 partie A) => P/59-29
               => 5 9 - 29 = 0 [p]
 p premier p)5 Fermat \ 50-1=1 (P) => 5-12 = 1 (P)
 P15=5
                =>> {ep-1=1[P]
PN2=1
b) m= kd+R DKKLd KeW
    5d= 2d [p] => 5kd= 2kd [p] => 5kd+1 = 2kd 5n [p]
                                     or (5kd+1=2kd+1 [P]
   => 52 2 kd = 2 kd+2 (p)
    => (P/55, 2kd 2kd+1 = 2kd(55-25) => 55-25=0[P]
        1 phekd=1
  c) 1/5-2 => 1=0
                                 (car sir to upossible d'après Partiet
                                          P1 5'- 2"
       Lone d/m
     59-29=0(p) => d/q
    59-1-28-1=0[p] => d/p-1
   7) 14
     1/p-1 ) => d/q 1 p-1
      (P-1)^{9} = 1 \cdot (P-1)^{9}
 30/ 51 p = 3 alors 9= 13
  81 p + 3 => p>5 => 59-29 = 0 (p) le plus petit mb qui ventie
    la relation est 1 => 5-2 = O[P] => P/3 impossible
           denc S= {(3,13)}
```

Correction Examen blanc 6 2éme Bac S. M

Année scolaire 2019/2020

Préparation pour le national 2020

page 1/43 (E): y"+y=0 l'eq. curactéristique associée à (E) est r2+1=0 5=> r=±i donc r, = i on r2 = -i (p=0, q=1, r=p+19) donc $y(x) = \alpha \cos x + \beta \sin x$, over $(\alpha, \beta) \in \mathbb{R}^2$ et solution géneral de (E). $(e^{Ph} \omega \cos x + \beta \sin \cos x)$ (2) soit $x \in \mathbb{R}^2$, (2) + (2) + (2) = 0@ ona gray = co(n) done g'(n) = -sinn et $g(\frac{\pi}{2}-n) = co(\frac{\pi}{2}-n) = sinh$ d'on $g'(n) + g(\frac{\pi}{2}-n) = -sinh + sinh = 0$ donc g est en élèment de E solution de f'(n)+f(\vec{F}-u)=0 (b) on a (g'(n) + f (T) - n) = 0 donc $f''(u) + (\overline{2} - u)' f'(\overline{2} - u) = 0$ $f''(u) - f'(\overline{2} - u) = 0$ => \(\big(\text{x} \right) = \(\big(\frac{\pi}{2} - \text{x} \right) \) si f est solution de l'equation f(4) + f(\f_-u) = 0 f'(n) = -f(g-n)F(\(\frac{1}{2} - \pi \) = - \(\frac{1}{2} - (\frac{1}{2} - \pi \) = - \(\frac{1}{2} - \pi \) etora f"(m) = f(x) duc f"(n) + f(n) = 0 donc f est solution de l'équation de (E): y"+y=0 d'après 6 on a f(1) = x cox+ pain, (x,p) EN2

dunc ((1) = - or sinn + p.com 6(1 -x/= - x con + psiin

et comme f(n)+ f'(g-n)=0 =0 2 psin =0 =0 p=0 = f(n)= x:con x eR

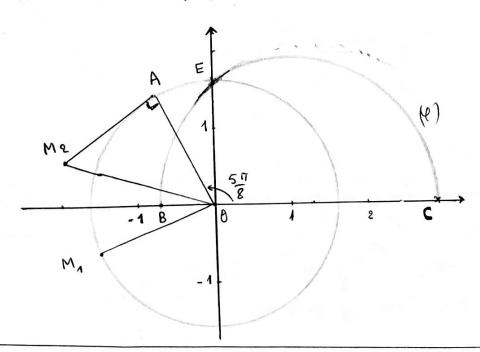
Correction Examen blanc 6	page 4/13	Prof B.LOUKILIA
dorc f est homomorphi	sme de (E, x) vers	(\mathbb{C}, \times) .
Montrons que l'est big	rective,	V
sat ZE (L., dimc J.M.	(y) (4) # = n	417
on pose of (M(acb))		
(A) a+b+ib		
(=) / (1 + 10 = x	a= 2-6= n-	y
(b = y	$ \begin{array}{c} $	
done YZEC 3! M((a,b) E E & f($M(aub)$ s= $\frac{1}{2}$
d'on feit bijective	de E vers (C.	
\$\frac{1}{2} \tau_{\infty} \t		
2	M(x-y,y) wec	t= n+iy,
O on a f est isomorphism	ne de (E,x) vers (O	., ×)
donc f(E) = C	de plus {(02)=0	
d'a {(E*)=	of dric & (0	2*) 5 E*
et comme (C*, x) g	proupe commanding	
alors (E', x) g	roupe communations	
et d'après la question	(2) E ent shubbe a	lans (M2CP), x)
et la loixest distribi		
dunc x est ditribit	· 1	. 0
$dlm (E, +, \times)$ est	un corps communità	hof.
	I-J (m3) =	f(I-J) (= (f(M)) = -i
	$(a \rightarrow a)$	3 27 27 3
on pose $t = n + i y$ over (2 - i)(2 + i)	(x,y) = 0	5 - CO a) & - C 5 6
Sep tsi ou t	+17-1=0	
ED Zs N' on Z:	=	m 2= 59 - 1;
ona to arbtibe xtiz	as last on lat	$b = \sqrt{3}$ $a + b = -\sqrt{3}$
on a $t = a + b + ib = x + iy$ c/c $S = \{M(A, 1), M(\sqrt{3} + 2)\}$	$(1,-\frac{1}{2})$, $M(\frac{4-\sqrt{3}}{2},-\frac{7}{2})$	$\frac{1}{2}) \alpha = -\frac{7}{2}$

Correction Examen blanc 6

page 5/13

Prof B.LOUKILIA

Exercice 3

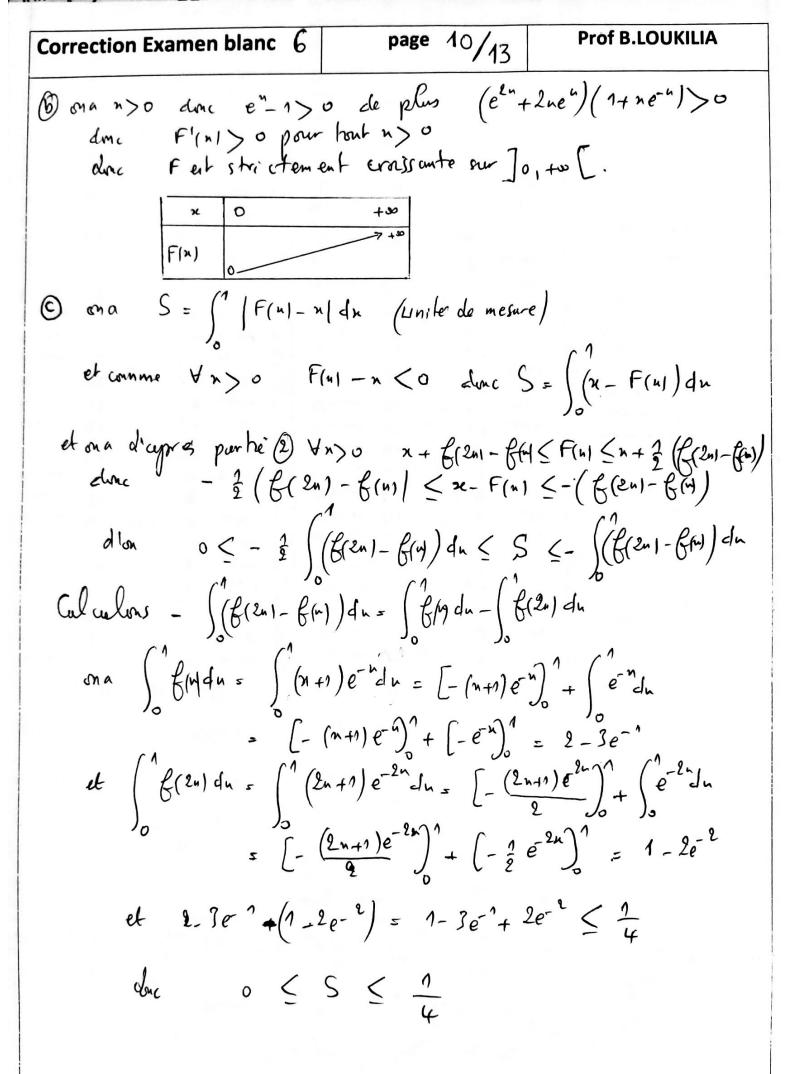

6)
$$\frac{1}{2}$$
, $\frac{1}{2}$ > 0 to arg $(\frac{1}{2}$, $\frac{1}{2}$) = 0 [211] et 0 ∈]0, $\frac{1}{2}$ [1 to $\frac{1}{2}$] et 0 ∈]0, $\frac{1}{2}$ [1 to $\frac{1}{2}$] et 0 ∈]0, $\frac{1}{2}$ [1 to $\frac{1}{2}$] et 0 ∈]0, $\frac{1}{2}$ [1 to $\frac{1}{2}$] et 0 ∈]0, $\frac{1}{2}$ [21] et 0 ∈]0, $\frac{1}{2}$ [22] et 0 ∈]0, $\frac{1}{2}$ [23] et 0 ∈]0, $\frac{1}{2}$ [24] et 0 ∈]0, $\frac{1}{2}$ [25] et 0 ∈]0, $\frac{1}{2}$ [26] et 0 ∈]0, $\frac{1}{2}$ [27] et 0 ∈]0, $\frac{1}{2}$ [28] et 0 ∈]0,

et comme
$$m = |m| \cdot e^{i\theta} = m^2 \cdot \lambda \cdot (1+i)$$

et comme $m = |m| \cdot e^{i\theta} = |m| e^{i\frac{2\pi}{8}}$ alors $m^2 = |m|^2 \cdot e^{i\frac{2\pi}{4}}$

et $i = e^{i\frac{\pi}{8}}$ et $1+i = \sqrt{2} \cdot e^{i\frac{\pi}{4}}$

donc 21.22= |m|2. e 19 x e 2. S2. e = |m|2. 52 e 127 d'a 21. 22 = [m/2. J2.

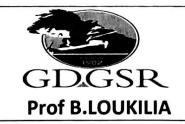

Correction Examen blanc 6	page $6/13$	Prof B.LOUKILIA
6 Le point E E (4) de diametre [en E, et les triangles och	BC), donc le t	riangle BEC est rectangle
en E, et les triongles OCI	E et DEB sont	rectungles en O.
sia la local =		FLW7
et conne BÉO + OÉC =	II (En) als	ms hum $(8EO) = \frac{1}{1000}$
et comme $B \in O + O \in O \in C = 0$ donc hum $(B \in O) = O \in O$	e on a hum (BEO)	$= \frac{eB}{\sigma E} \qquad tum(\sigma E E)$
$\frac{d^{2} \text{ on } \frac{d}{dc} = \frac{dR}{dc} $	of = ob.	2C '
@ Dérduction : on a m = TE	- e 8 dmc	m/s 4 (5)
d'autre part 0E2 = 0B.0 il en résulte que m =0	C = 61. - 52 = 6	E. V2 donc OE = JE
	E	72
(40). Voir france précédente.	T A	
B ona zes m(1+i)= J2 de A pour le composé d'em d'un homoteté de centre	e 4.m, Jen	resulte que Me et l'mage
de A par le comporé d'un	robetion de cen	tre O et d'angle I et
d'un homoteté de centre	O est de rayor	t 12.
de plus 2 = im = eine m de A par la robetion R	, il en result	e que Ma est l'insuge
de A par la robetion R.	de centre 0 et c	'angle II.
Problème.		
Partie 1		2
(1) (a) soit n>0, on a boven n <	(2x et la fonc	tion f est continue sur
[x, 2x), est dérivable sur]x.	2nl, Long d'a	uprès le lheoreme des
accroissements finis, il exis	ste $c_x \in \mathcal{I}_n$, ϵ_x	l'hel que:
$f(2x) - f(x) = x \cdot f'(c_x)$ Porc pour tout $x > 0$, il ex.	= x (e cx - cx -	$e^{c_x} = e^{-c_x} = -x \cdot c_x \cdot e^{-c_x}$
Done pour tout x>0, il exi	ste $c_x \in \int x, 2x$	[to f(2x)-f(x)=-xc.e
(b) suit x>0, d'après ce qui	précède foi	2n1-6(n/=-xcnex
B sist n>0, d'après ce que ovec cn>n>0, donc	- x Cn e-cn	<0 (cmme e >0)
d'm	G(2n)-G(n)	< o

page 7/13 Correction Examen blanc 6 Prof B.LOUKILIA 2) en suit que \n>0, \frac{1}{2} \cn>n \frac{1}{2} \left\{2n1-\left\{n\} = - \times \chi_n e^{-ch} on a bien si n-, +00 alors c, -, +00 de plus $\forall x > 0$ $0 < x \cdot C_n e^{-C_n} < C_n^2 \cdot e^{-C_n}$ et on suit liet = 0 donc li ch. e-ch = 0 donc line x. Cx é ch = 0 d'on line f(2n) - f(n) = 0 Partie 2 00 soit $x \in (0,1)$, ona $1-x^2 < 1$ $\Rightarrow (1-x)(1+x) \leq 1$ d'autre part pour bont $n \in [0,1]$ $\frac{1}{1+x}$ car 1+x>0on a $1-\frac{\pi}{2}-\frac{1}{1+\pi}=\frac{2(1+\pi)-(1+\pi)\pi-2}{2(1+\pi)}=\frac{\pi(1-\pi)}{2(1+\pi)}$ ona $x \in [0,1]$ donc x>0 et 2(1+x)>0 et 1-x>0donc $\frac{x(1-x)}{2(1+x)} > 0$ d'on $1-\frac{x}{2} > \frac{1}{1+x}$ on conclut que $\forall x \in [0,1]$ $1-x \leq \frac{1}{1+x} \leq 1-\frac{x}{2}$. (b) Soit t ∈ [0, +w[si t s o, la viegulités sont verifiées. si t > 0. Pour pouvoir ay liquer la question précedente, il suffit de montrer que o s tet < 1, cuid o s t < et posms donc glt) = et-t, te [0,+0)[en a brein g est de rivable en [o, two], donc g'(t) = et-1 comme t >0 =0 et >1 =0 et-1>0 =0 g est stri. crossembe our [0, +0 [cud pour t>0 ona glt]>g(0) => t>0 et-t>1 on conclut que $\forall t > 0$ et > t alon $0 \le te^{-t} \le 1$ d'on $1 - te^{-t} \le \frac{1}{1 + te^{-t}} \le 1 - \frac{te^{-t}}{2}$ pour bont $t \in [0, +\infty[$ on conclut que

Correction Examen blanc 6 page 8/13 **Prof B.LOUKILIA** © soit n), o pour n= o les inégalités sont vérifiées.

si x>0 con a d'après ce qui précéde $1-te^{t} \leq \frac{1}{1+te^{-t}} \leq 1-\frac{te^{t}}{2}$ donc $\int_{2}^{2n} (1-te^{-t}) dt \leq \int_{2}^{2n} \frac{1}{1+te^{-t}} dt \leq \int_{2}^{2n} 1-\frac{te^{-t}}{2} dt$ et d'après la première partie $\forall x \in [0, +\infty)$ $f(n) = -ze^{n}$ donc $\left(\frac{2x}{z} + \frac{1}{z}\right) = \left(\frac{2x}{z}\right) - \left(\frac{2x}{z}\right) - \left(\frac{2x}{z}\right) = \left(\frac{2x}{z}\right) - \left(\frac{2x}{z}\right) = \frac{1}{z}$ d'on $(1-te^{-t})dt = [t]_x^{2n} + f(2n) - f(n) = x + f(2n) - f(n)$ et $\int_{\pi}^{2} \left(1 - \frac{te^{-t}}{2}\right) dt = x + \frac{1}{2} \left(f_{2}(2n) - f_{1}(x)\right)$ on reuplace duns l'anégalite & on trouve $\forall x > 0$ $x + f(2n) - f(n) \leq F(n) \leq x + \frac{1}{2} \left(f(2n) - f(n)\right)$. (d) on a 4 n > o F(n) > n + f(2n) - f(n) et li (n)= +00 et li (E(2n)-E(n))=0 dunc li F(n)= +00 (par la comparaison de limites). de plus $\forall n > 0$ $x + f(2n) - f(n) \le F(n) \le x + \frac{1}{2} (f(2n) - f(n))$ done $\forall n > 0$ $f(2n) - f(n) \leq F(n) - n \leq \frac{1}{2} \left(f(2n) - f(n) \right)$ alors Q: (F(u) - u) = 0 et comme 2 in F(n) = +00, donc (D): y=n sot une asymptote oblique à (CF). @ soit x > 0 ona F(u)-n < \frac{f(2u)-f(u)}{2} \left\ o \left(d'apre' pur hè ()) l'interprélation de cette inégalité est que la courble (CF) est situé au dessous de la droite (D) sur [0,+00[.

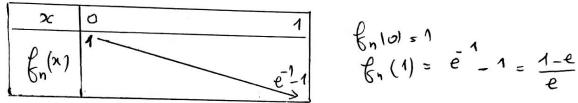
Correction Examen blanc 6 page 9/13**Prof B.LOUKILIA** 2) d'après ce qui précède ona $\forall n > 0$ $n + f(2u) - f(u) \leq F(u) \leq n + \frac{1}{2}(f(2u) - f(u))$ $donc \forall n > 0 \quad 1 + \frac{f(2u) - f(u)}{n} \leq \frac{F(u) - F(0)}{n} \leq 1 + \frac{1}{2} \cdot \frac{f(2u) - f(u)}{n}$ et d'uprei la prartie (1) Vn>0 3 cn t)n, 2n[f(2n)-f(4) = - x 2. e cn dunc Vn>0 3 cn t]n, 2x[f(2n)-f(4) = - cn. e cn de plus si n-sot on a Cn-sot cor Cre Du, 2nl et 2- - Cr. e Cn = 0 d_{n} Q = 0on en de duit ℓ $\frac{F(u) - F(v)}{x - v} = 1$ (d'apprés le théorème) d'un Fest dérivable à droite en zero et F'a(0) = 1 3 @ soit n>0, commegit \(\begin{array}{c} \frac{1}{1+te-t} & \text{est continue sur } \int_{0,+\infty} \big[donc g admet une primitive sur Jo, +w [que l'on proce G(m) = gltdt donc F(n) = gltdt = gltdt + g(t) dt d'on Fluis G (201 - G(n) on a brien G est dérivable sur Jo, tol de plus np en est dérivable sur Jo, sul et ∀n>0 2n∈]0, +w[donc NHO G(2n) est dérivable cur) 0, +w[Fest dérivable sur) 0, +w[de plus f'a(o) = 1 done Fest dérivable sur [0,400[et onc Yn) o $F'(x) = 2 G'(2x) - G'(x) = 2 \cdot g(2u) - g(x)$ $= \frac{e^{2n} + 2n(e^{n} - 1)}{(e^{2n} + 2ne^{n})(1 + xe^{n})}$


Correction Examen blanc 6 page 19/13A. retenir: si Vx E (a1b) &(A)>0 => (b & M dn>0 Merthode 2 . ona g. t_s 1 1+tet est continue sur Do, +00[, Lonc admet une fonction primitive G qui est strictement crosscente (G'sg>0)
donc G est injective.

de plus (20th g lt) dt = e" =0 (g lt)dt = 0 =06(2l)- 6(l)=0=0 G(2l)=6(l) 20 21 sl 20 1 s o (2) (a) soit n), 1 tut ~ ~ ~ . la fonction F est continue sur [9 $\propto n$ [(cor F est dé rivable) donc d'apprer les formule de la moyenne $\exists \beta_n \in [0, \alpha_n]$ tel que $F(\beta_n) = \frac{1}{\alpha_{n-0}} \int_0^{\alpha_n} F(1) dt = \frac{U_n}{\alpha_n}$ donc $\exists \beta_n \in [0, \alpha_n[$ $U_n = \alpha_n \cdot F(\beta_n)]$ B) soit v > 1 $U_{n+n} - U_n = \int_0^{\alpha_{n+n}} F(t) dt - \int_0^{\alpha_n} F(t) dt = -\int_0^{\alpha_n} F(t) dt = -\int_0^{\alpha_{n+n}} F(t) dt$ et comme (dn) est décraissante et la function F est positive donc fresh dt >0 00 - freshet <0 00 Unin-Un <0 donc (Lin) est dévonissante Déduction: on a Un = (din Fit)dt = din F(Bn) donc Vn),1 Un), o , donc (Un) est minoreé par o , d'on (Un). Ruge

Correction Examen blanc 6 page 13/13	Prof B.LOUKILIA
porons l = Q: Un for par parsage a la limite un trouve l dan Q: Un = 0.	
Bosent n > 1, la fonction F est continue sur [1 dérivable sur] Wn+ 1, Wn+ 2 [donc d'aprés le lévereme des accroissements existe à n t) Wn+ 1, Wn+ 2 [49 14 15 16 19 19 19 19 19 19 19 19 19 19 19 19 19	finis $(T.A.F)$ il
$\frac{F(U_{n} + \frac{2}{n}) - F(U_{n} + \frac{2}{n})}{(U_{n} + \frac{2}{n}) - (U_{n} + \frac{2}{n})} = F'(\lambda_{n})$ $= \int (\lambda_{n} + \frac{2}{n}) - F(U_{n} + \frac{2}{n}) = \frac{e^{\lambda_{n}}}{(e^{2\lambda_{n}} + 2)}$ $= \int (\lambda_{n} + \frac{2}{n}) - F(U_{n} + \frac{2}{n}) = \frac{e^{\lambda_{n}}}{(e^{2\lambda_{n}} + 2)}$	2 2 n (e ² -1) 2 2 n) (1 + 2 n e ² n) Cg. F.D
et comme Ci (Un+1) = Ci (Un+ day Ci) An so (Heoreme de	gen darmes)
de plus la fonction no e + 20 (e ²ⁿ + 2x)	$\frac{(e-1)}{(1+xe^{-u})} = \text{s.t.continue}$
et ma $V_n = \frac{e^{n+2\lambda_n(e-1)}}{(2\lambda_n + 2\lambda_n)(a+\lambda_n e^{\lambda_n})}$	$\forall n > 1$ $(arl \lambda_n = 0)$ et $Q: tet = 0$

Correction Examen blanc 8 2éme Bac S. M Année scolaire 2019/2020


Préparation pour le national 2020 page 1/17

Exercice 1

If n est dérivable sur IR (comme somme de deux dérivables sur IR) donc f est dérovable sur [0,1) et on a $\forall x \in [0,1)$ $f'_n(x) = -e^{-x} - (2n+1) \cdot x^{2n}$ en a pour tont $x \in (0,1)$ $e^{-x} > 0$ et $(2n+1)x^{2n} > 0$

donc tre [0,1) & fin (1) <0 d'on for est strictement decroissante sur (0,1)

2) En est continue sur [0,1) (comme somme de deux fets continues) de plus f est strictement décroissante sur [0,1) donc elle revolise une bijectain de [0,1) vers l'intervalle J tel que J = ([0,1) = [e-1,1]

et comme $0 \in$] e^{-1} , 1, 1 [alors l'eq. $g_n(x) = 0$ admet une solution unique $U_n \in$) 0,1 [.

(3) (a) Soit $x \in J_{0,1} \cap \{1, \text{ soit } n \in \mathbb{N}^*\}$ $= x^{2n+1} - x^{2n+3} = x^{2n+1} (1-x^2)$ et comme $x \in J_{0,1}[$ ulors $1-x^2>0$ et $x^{2n+1}>0$

d' on $x^{2n+1} (1-x^2) > 0$

GC ANEMA AXE DONE $f_{n+1}(x) > f_n(x)$ Correction Examen blanc 8 page 2/17 **Prof B.LOUKILIA** Bonadaporés ce qui precède Ynthut, Ynt Join [En(n)/En(n)
pour x = Un+1 1 una aura En [Un+1) < En+1 (Un+1) et comme { n+1 (Un+1) = 0 alors { (Un+1) < 0 (C) con o for (Un+1) < 0 => for (Un+1) < for (Un) (cor for (Un)=0) =0 Un+1 > Un (our for est strischent decrussante) Déduction: (Un) est une suite croissente et majorée par 1 donc elle est convergente. (4) a ma fm (Un) = 0 = 0 e-un_ (Un) = 0 20 e-Un = Un lm+1 = - Un = ln (Un = 2 (2n+1) = (2n+1). ln(Un) 30 ln (Un) = - Un 2n+1 (l>0) et comme $ln(U_n) = -\frac{U_n}{2n+1}$ et la fonction la est continue Sur Jo, tw (donc Q: ln(Un) = li (- L/n) = ln(l)=0 20 ls 1 Exercice 2 $2^{2} - (1 + m(2+i)) \cdot 2 + 2m(1+im) = 0$ Soit (E): (1+m(2+i))2-4(2m(1+im)) 1+ m2 (2+i)2+2 m(2+i) - 8m'(1+im) = 1+ m2 (3+4i) + 4m + 2mi - 8m - 81m2

 $= 1 + \frac{1}{2} + \frac{2mi - 4m}{m} + \frac{m^2}{m^2} (3 - 4i)$ $= 1 + \frac{2mi - 4m}{(i - 2)} + \frac{m^2}{(i - 2)^2} = (1 + m(i - 2))^2$ (GPF)

Correction Examen blanc	page	3/17	Prof B.LOUKILIA
6 comme $D = (1 + m(-2+i))^2$ $don(2_1 = -\frac{b+d}{2a} = \frac{1+m(-2+i)}{2a}$	= d°	avec d= +1+m(-2+	1 + m(-2 + i) + i) = 1 + i m
et $29 = \frac{-b-d}{2a} = \frac{1+m(}{}$	2+1)	-1-m(-2	+i') = 2m.
20 UER 60 2m ER (m + i) 1+im			
The state of the s	\bowtie	2m 5	<u>2m</u> 1+im
26.6			m = 2m (1-im) $m = 2m - 2imm$
2 E'C 2 E'C 2 - 2 Rep 2 - 2 = 2 (Im/2) 2 - 2 = 2 (Im/2) 2 - 2 = 2 (Im/2)	60	2m - 2m.	5 4imm = 4i m 2
7-43 (22	6D)	m-m s 2: Im($2i m ^2$ $m) = 2i m ^2$
		1 = 2/m/	
(m + i) $ m ^2 = Im(m + i)$ on puse $m = x + iy$ over donc $ m ^2 = x^2 + y^2$ et o	(ngi sna Ii	$y \in \mathbb{R}^2$ $n(m) = y$	
$d \ln m ^2 = Im(m) =$	φ ? > γ ²	e2+y2= y day	$2x^{2} + y^{2} - y = 0$ $1 = 1$
(-	=D (X	-0) + (y-	$\frac{1}{2} = \frac{1}{4}$ $\frac{1}{2} = \left(\frac{1}{2}\right)^2$
d'on l'ensemble des prints	M(m) pour que	UER est le cercle

d'on l'ensemble des prints M(m) pour que UER est le cercle
(4) de centre I (o, \frac{1}{2}) et de rayon R = \frac{1}{2} déprouvé du point I(o,1).

3 a A(-i) et M(m) et 0 sont alignes AN \frac{m-0}{-i-0} \in IR \frac{m+i\frac{1}{2}}{-i} \in R

\tau \times \times

Correction Examen blanc 8	page 4/17	Prof B.LOUKILIA
$\frac{U_{+i}}{U} = \frac{\frac{2m}{1+im} + i}{\frac{2m}{1+im}} = \frac{2m}{1+im}$	$\frac{i(1+im)}{2m} = \frac{m+i}{2m}$	$= \frac{1}{2} \cdot \frac{m+i}{m} .$
@ mamdaiR _ m +i et m	+-i	
et comme <u>u + i = 1</u> .	m+i alors u	$\frac{1}{m+i} \times \frac{m}{m+i} = \frac{1}{2} \left(m \neq -i \right)$
donc <u>u+i'</u> x m +i ER	- uid $\frac{2B-2A}{2B-20}$	× 2m-20 ER
d'on les proints A,M,O Exercice 3		•
1 @ Methode 1: Algorithme de	Echde	an+by=c
ma 2013 = 1 × 1962 +	51	(admet des.)
1962 = 38 * 51 + 2		Solutions dans
51 = 2x H + 3		anb/
$24 = 8 \times 3 + 0$ donc $2013 \times 1962 = 3$.		\ /c/
Méthode 2: Décomposition Déduction.	^	miers.
sna(E)20132 - 19624 = 54		
et comme 3 divise 54 donc (E) admet des solu	(ur 54 = 3×18	3)
donc (E) admet des solu	tions dans &.	, 9-12/28) 1962(80)=54
(b) ona (78,80) est solution pur	n'allere de (c) doi	671(78)-654(80)=18
et comme (E): 2018 x - 1962 y	1=54 =0 621x -	654 y = 18
et comme (E): 2013 x = 1962 y => 671 (x - 78) = 6	(48) - 654 (80)	0
$\Rightarrow 671(n-78) = 6$	34 (4-80)	
=> 654 / 671 (n-A	· g)	
et comme 6541671 = 1 = 3 = 1 = 2 = 1	done diappres 9	auss $654/x-78$
a) 3 k E k tg n	= 78 + 654k.	() (((, %0)
on remplace & par 78	654h duns 67	1(n-78 /= 674(y-30)
on remplace & par 78 - on trouve 671 (654 k))= 674(y-80)	671k, kEl.
= 0 y_80 = 671/k	20 y - 55 T	

Correction Examen blanc 8	page	5/17	Prof B.LOUKILIA
donc si (nig) est solution	(E) (B) N.	= 78+651	th et y = 80 + 671k, kEll
Réciproquement tous les sont sol	couples (654k+78	5,671h+80) de 2º
sint sol	artisses de l	t) cur:	e (nal)
2015 (=	184654K)	7 0 0 ()	80 + 621k) 1316502k - 159660
_ 15	2014 - 159	660 = 51	4 .
conclution S: 7 (7	8+654k,8	0+671k)	IKELLY en l'ensemble
(n,y) est solution de (E)	rins de l'	eq. (E).	SU
(e) (mig) est sociolos de (e)	= 2015n.	- 1962y =	18
	20 671 n	= 18 + 1	654y=6 (3+109y)
	an 6/6		0)
et comme Ga	9		671 = 11 × 61 et
et comme 61 donc d'apres (jauss 6/2	6	0,11=1 et 6,61=1
	0 0		0.11 = 1 et $6.61 = 1$ $11.61 = 1$
A = A = A = A = A = A = A = A = A = A =	o [6]. n=54 d=1	, 671 x - 6	Suy = 18
(E): 2013x - 1962 on prose d = n/y =0	d/n et d/	y	0
\Rightarrow	d (6717 -	6549	
=	70/18 =0	, de fles	diviseurs de 185
	$0 d \in \langle A,$	2, 3, 6, 9,	185
(4) ona 2671a-654b= anb=18	18		,
2 anb = 18		. (
2013a-1	9626 = 54	pp (a)	(b) est solur en de (c)
) and = 1	8)	anb=18
(A) C) C) = 78+	654 k	E V.	
b = 80 + 0 $0 = 78 + 0$ $0 = 80 + 0$ $0 = 80 + 0$	18	•	
dune on divise by pu	ur a en ut	ilisant A	régorithme d'Echide

ona $671h + 80 = 1 \times (654h + 78) + 17h + 2$ 654h + 78 = 38(17h + 2) + 8h + 2 17h + 2 = 2(8h + 2) + k - 28h + 2 = 8(h - 2) + 18

dunc anb = (k-2) 118

d'on le système devient $\begin{cases} a_1b=(k-2)n_18 \\ a_1b=18 \end{cases}$ donc $(k-2)n_18=18$ and 18 divise k-2don $\exists x \in \mathcal{U}$ if k-2=18xand $\exists x \in \mathcal{U}$ if k=2+18x.

on remplace le par 2+18x dons le système 2 a= 78+654h b= 80+671k

en trave $\begin{cases} a = 1386 + 11772 \times \\ b = 1422 + 12078 \times \\ a_1 b = 18 \end{cases}$

don S= { (1386+11772 ~, 1422+12078 a), d EN/ (il est facile de véri hèr que le couple (1386+11772 a, 1424+12078 a)

verifie le système proposet)

Correction Examen blanc &	page	7/17	Prof B.LOUKILIA
Exercice 4 : Partie 1			
1) sovent net y de. R. 3 = 3 = M.q V(n) E R2-32 } n While sons le principe de	+ y & R - 2 &	n * y = 7	$x + y = x + y - 2xy$. $x + y \neq 3$.
Utilisons le princèpe de	contraposé	'. _^ (01 = '	$\frac{1}{2} \cos u = \frac{1}{2}$
cad \((n,y) \(\text{R}^2 - \lambda \frac{1}{2} \rangle \) sureut n,y \(\text{R}^2 - \lambda \frac{1}{2} \rangle \)	•		
$n + y = \frac{1}{2} \implies n + y - 2n$ $\implies \frac{1}{2} (2n - n)$	$y = \frac{9}{2} = 9$) = 0 y - \frac{1}{2} + y ((1-2n) = 0
≈ (2n-1)(1 -y) = 0 =	$\lambda = \frac{1}{6}$	on $y = \frac{1}{2}$
d'an + est une loi d	> n +y El	2-32 /	dans R-37.
Sweet my de 1x- { 2	ን		, , ,
Axy = xxy - 2ny = dunc x est communts	y+n-2yn Live dans 1	= y*x R- 31,6	
swent nigit de R-2	2 /	(2)	
$\operatorname{ema}(x+y) + z = (x+y-2)$	2ny) * } 'y)+z - ²(n +y - 2a y)	•3
= 2+4+7	- 2ny - 2n	7 - YJ +	4 ny 3.
de plus n* (y*z) = n	* (9+3-29 +y+3-293	6) 2x(y.	+7 - 2y z)
$1. \forall \alpha = 0$	+y+3 - 2ny) - 2, 7 - 2	y z + 4 x y z
donc \(\langle \(\text{m.y.j} \right) \in \(\text{R}^3 - \right) \frac{1}{2} \\ d'un \(\text{* est association} \)	redans R	-325)" &
3 en q x ost commu tutive Deller min ons l'élément	e et associo	tive dans	R-325
Moithado 1: La remarque	Q		
Remarques que pour et comme * est con	nmututive	$\left(\frac{1}{2}\right)$ $\frac{2}{2}$	elet neutre cherchéalo
Methode 2: Resolution soit xER- { 1/2} to 21 *	de l'equil	tron x * x + e - 2 e = 0 ou	e = x, n = 2 e = 0 $e(1-2n) = 0n = 1$
of common of 1 alon	(29Kur)	= 9 (=)	dans R-{1/2}

Correction Examen blanc 8	page 8/17	Prof B.LOUKILIA
Déterminons l'élèment symetre soit x ER - { 2} on pose x	-ique n' de n d + n' = e (=) n- + n' = + n' =	lans $R - \frac{1}{2}$ +n' - 2nn' = 0 (1-2n) = -x $\frac{2n}{2n-1}$ $(n \pm \frac{1}{2})$
de plus n' $\in \mathbb{R} - \left\{ \frac{1}{2} \right\}$ cor	$Si^{\prime} n^{\prime} = \frac{1}{2} \otimes \frac{1}{2n}$	$\frac{n}{n} = \frac{1}{2} = 0 = 0 = -1$ contradiction
dons tout élèmet n de R- dons tR- { } } on dédout de ce qui préc 4 On utilise le principe de soit x & 1R- { } }	\$\frac{1}{2}\$ admet on \$\$ ede que (R-\frac{1}{2}) recurrence	symetrique $x' = \frac{2i}{2n-1}$
et $\frac{1}{2}(1-(1-2))$	$(a)^2$) = $\frac{1}{2}$ (1 - 1) Osur n = 2	1 + 4n - 4n2) = 2n - 2n2
soit nEN 20,15 et soit x en suppose que x + x * x x n fois et on montre que n + x + n fois	$\frac{1}{2} = \frac{1}{2} \left[1 - \left(1 - \frac{1}{2} \right) \right]$	2u)))
x x x x - + x = \frac{1}{2} \left[(1-	(1-22)) +1	(1- (n-2n)").x
$=\frac{1}{2}-\frac{1}{2}$	(1-2n)"+n-x	+ x (1-2x)"
$= \frac{1}{2} - \frac{1}{2}$	$(1-2n)^{n+1}=2$	$= \frac{1}{2} + \frac{1}{2} \left(1 - 2n \right)^{n} \left(2n - 1 \right)$ $= \left[1 - \left(1 - 2n \right)^{n+1} \right].$
done $\forall x \in \mathbb{R} - \left\langle \frac{1}{2} \right\rangle \forall n \in \mathbb{R}$ $2 \times 2 \times - \times 2 = \frac{1}{2}$	1" - { 011} 1 [1- (1-2x)"]	

page 9/17 Correction Examen blanc 8 Prof B.LOUKILIA Partie 1 sovent A(n) et A(y) des élèments de E avec. n, y E 1R- 2 2 } $A(x) \times A(y) = \begin{pmatrix} 1-x & 0 & x \\ 0 & 1 & 0 \\ x & 0 & 1-x \end{pmatrix} \times \begin{pmatrix} 1-y & 0 & y \\ 0 & 1 & 0 \\ y & 0 & 1-y \end{pmatrix}$ $= \begin{pmatrix} (1-x)(1-y) + xy \\ 0 \\ x(1-y) + (1-x)y \end{pmatrix}$ 0 (1-x)y + 2(1-y)0 ny + (1-n)(1-y) $= \begin{pmatrix} 1 - (x + y - 2xy) \\ 0 \\ x + y - 2xy \end{pmatrix}$ O 1 $\begin{array}{cccc}
1 & 0 \\
0 & 1 - (x + y - 2xy)
\end{array}$ = A (x + y) etona V (m.y) ER2 - / 1/2 / 1 xxy ER - / 1/2 / donc $A(n) \times A(y) = A(n \times y) \in E$.

I'an E as one partie stable de $(M_3 \cup R), \times)$. Doscient my de IR. $\frac{1}{2}$ on $\frac{1}{2}$ or $\frac{1}{2}$ on $\frac{1}{2}$ o donc $\exists! x \in \mathbb{R} - \langle \frac{1}{2} \rangle$ to M = A(x)d'en $\exists! x \in \mathbb{R} - \langle \frac{1}{2} \rangle$ to M = A(x) = f(x)d'en $\forall M \in E \exists! x \in \mathbb{R} - \langle \frac{1}{2} \rangle$ to M = f(x)on dé duit que f est bijective de $\mathbb{R} - \langle \frac{1}{2} \rangle$ vers Eon conclut que f et i sonorphisme de $\mathbb{R} - \langle \frac{1}{2} \rangle$ vers E. D ena (R- /½/, x) est em groupe commu tatif

et g est em isomorphisme de (R-/½/, x) vers (E, x)

donc (E,x) et un groupe communtatif

Correction Examen blanc 8 page 10/17

Prof B.LOUKILIA

© pour n= 1 cona $B^1 = B = A(-\frac{1}{2}) = A(\frac{1-2^{\frac{1}{2}}}{2})$, vérifie suit neav

on suppose que $B^n = A\left(\frac{1-2^n}{2}\right)$ et on montre que $B^{n+1} = A\left(\frac{1-2^{n-1}}{2}\right)$

 $\operatorname{cha} \quad \operatorname{B}^{n+1} = \operatorname{B}^{n} \times \operatorname{B}^{1} = \operatorname{A} \left(\frac{1-2^{n}}{2} \right) \times \operatorname{A} \left(-\frac{1}{2} \right) = \operatorname{A} \left(\frac{1-2^{n}}{2} \times \left(-\frac{1}{2} \right) \right)$ $= A \left(\frac{1-2^{n}}{2} - \frac{1}{2} - \frac{9}{2} \left(\frac{1-2^{n}}{2} \right) \times \left(-\frac{9}{2} \right) \right) = A \left(\frac{1-2^{n+1}}{2} \right)$

donc d'après le principe de récurrence $\forall n \in \mathbb{N}^* \ B^n = A\left(\frac{1-2^n}{2}\right)$.

Montons que $\forall n \in \mathbb{N}^+$ $(B^n)^{-1} = A\left(\frac{1}{2} - \frac{1}{2^{n+1}}\right)^n$.

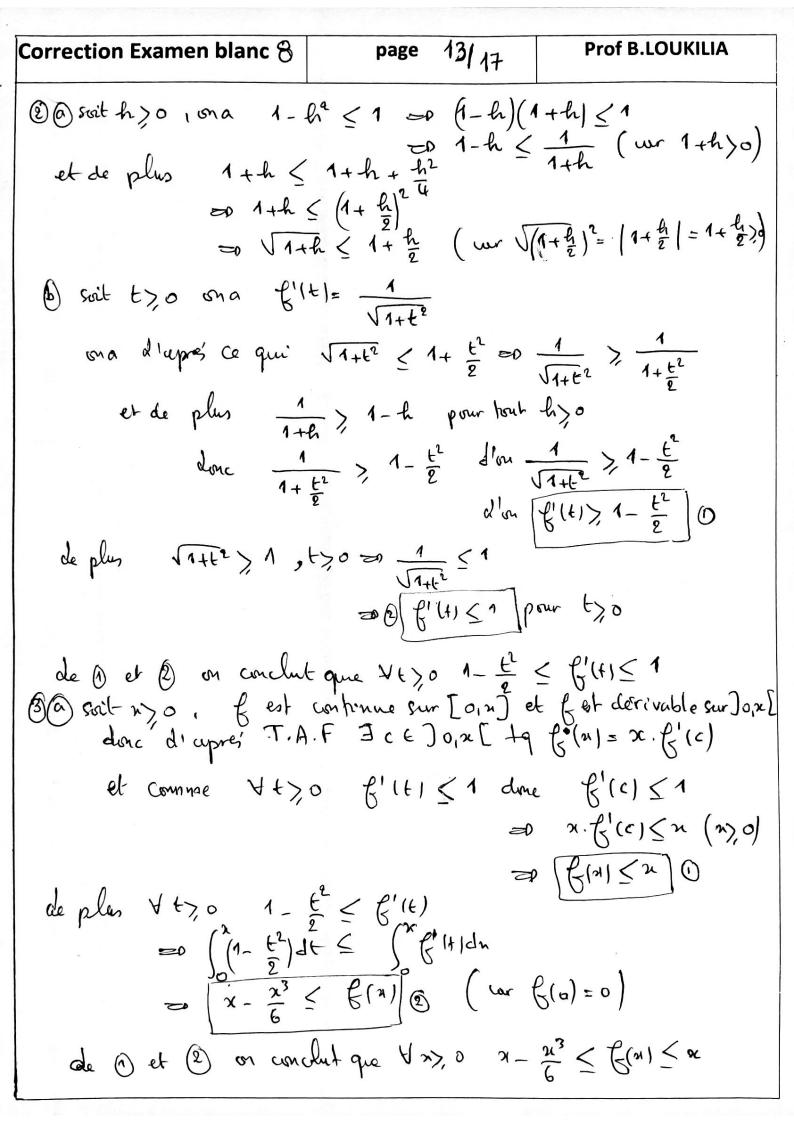
 $\operatorname{sna} \quad \operatorname{B}^{n} \times \operatorname{A} \left(\frac{1}{2} - \frac{1}{2^{n+1}} \right) = \operatorname{A} \left(\frac{1-2^{n}}{2} \right) \times \operatorname{A} \left(\frac{1}{2} - \frac{1}{2^{n+1}} \right).$

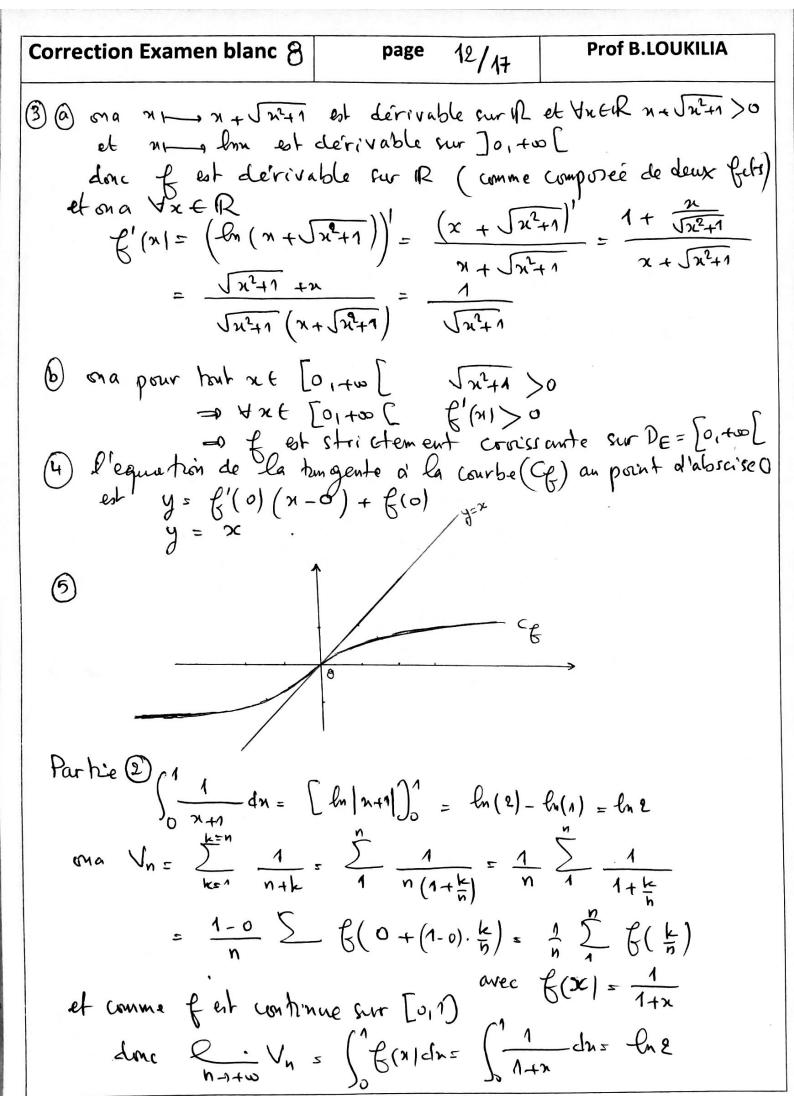
 $= A \left(\frac{1-2^n}{2} + \left(\frac{1}{2} - \frac{1}{2^{n+1}} \right) \right)$

 $= A \left(\frac{1-2^{n}}{2} + \frac{1}{2} - \frac{1}{2^{n+2}} - \frac{1}{2} \left(\frac{1-2^{n}}{2} \right) \left(\frac{1}{2} - \frac{1}{2^{n+2}} \right) \right)$

 $= A \left(\frac{1}{2} - \frac{2^n}{2} + \frac{1}{2} - \frac{1}{2^{n+1}} - \frac{1}{2} + \frac{1}{2^{n+1}} + \frac{2^n}{2} - \frac{2^n}{2^{n+1}} \right)$

 $= A \left(\frac{1}{2} - \frac{2^n}{2^{n+1}} \right) = A \left(\frac{1}{2} - \frac{1}{2} \right) = A \left(0 \right)$

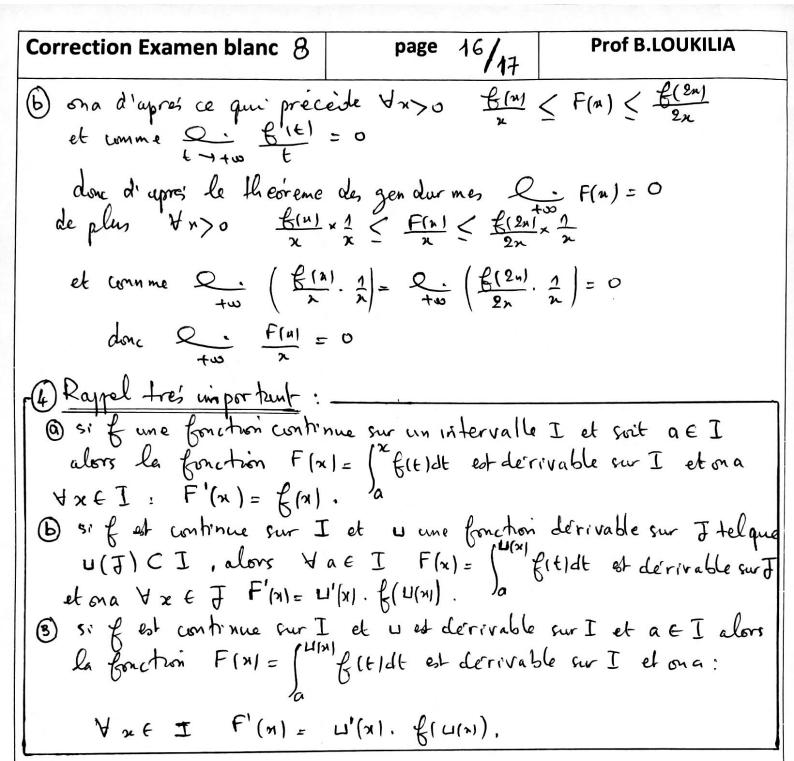

de plus A(0) = (0 1 0) = I3


dunc $B^{n} \times A\left(\frac{1}{2} - \frac{1}{2^{n+1}}\right) = I_{3}$

et comme X est communtative duns E donc A (2 - 2 m+1) × B" = I3

 $d^{1}m \left(B^{n}\right)^{-1} = A\left(\frac{1}{2} - \frac{1}{2^{n+1}}\right)$. par bout $n \in \mathbb{N}^{d}$

Correction Examen blanc 8	page	11/17	Prof B.LOUKILIA
Problème			
Partie 1) Soit Em =	ln (x+5	$\overline{x^2+1}$	
O soit XEIR on a	$\chi^2 < \chi^2 + 1$	=n x	< Jx2+1
			$\frac{\chi^2+1}{\chi^2+1} < \chi < \sqrt{\chi^2+1}$
		\Rightarrow x	$-\sqrt{x^2+1}$
0.21		→ 0 %	+ \(\sigma^2 + 1\) > 0
done treat not			*
De = 2xER x+J et comme d'apprés ce	qui pré	ide Vx E	R n+ J2+1>0
Aur DE = IK	_		,
(0) (1) (2) (3) (4)	- x ∈ R		$l_{n}(\sqrt{n^{2}+1}-n)$
de plus $f(-n)$	$=$ $ \sim$ $ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim	-W(1)	(3x7-x)
	= ln ((Jn2.	12°+1 +	n)
	0 1	1	$1 = - \ln(x + \sqrt{x^2 + 1})$
	= th ()	2ª+1+n	$=-\ln\left(x+\sqrt{x^2+1}\right)$
	= - 6(n)	
donc & est impo	aire 0'	/	
	Accorde	a day 1	D= - D+ NR+= [0,+00[
Deduction : comme f 6 on a 2 (2+ Jn2+1)) = +w	e conc	DE - 16
$\frac{1}{100} \frac{1}{100} \frac{1}$,	Ο ρ,	1
et comme librts	to duc	to Ax	
et comme Lithts Linto	ln (x+Jx2+1]=Q.	$\frac{\ln(u) + \ln(1+\sqrt{1+\frac{3}{2}})}{2}$
480 24 400	0 0 /	400	X (0 0 t)
= ×			two E
too /	, x	one bul	in direction
donc (Cf) admet un (ox) au voissin aug	ne promone do + ∞	pm and	-que eje ante
pry an version and			*



Correction Examen blanc 8	page	14/17	Prof B.LOUKILIA
B on a d'apres' ce qui pre donc ∀k∈ IN+	écède $\forall x$, $k - \frac{k^3}{4} < \frac{1}{3}$	$\frac{x^3}{6}$	< \(\begin{aligned} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		, , ,	$\frac{1}{2} f\left(\frac{1}{n+k}\right) \leq \sum_{k=1}^{n} \frac{1}{n+k}$
-o Yhem* E	1 1 - 1 - 1	$\int_{i=1}^{n} \frac{1}{6(n+k)^3} \le$	$U_n \leq V_n$
	$\sum_{k=1}^{p-1} \frac{(n+k)_3}{1}$	$ \leq \frac{1}{n^2} \sum_{k=1}^{\infty}$	$\frac{1}{(n+k)(n+k)^2} < \frac{1}{n^2(n+k)}$ $\frac{1}{(n+k)}$
	- 6 ne k=1	1 < -	$\sum_{k=1}^{\infty} \frac{1}{6(n+k)^3}$
h		$\begin{cases} -\sum_{k=1}^{n} \frac{1}{6!} \\ 1 \end{cases}$	
			- \frac{5}{\lambda_{m+k}}^2 \frac{1}{6(m+k)^3}
donc $V_n - \frac{1}{6}$	$\left(1-\frac{1}{6n^2}\right)$	∠ Un <	V ₄
donne et la the	Vn ($\left(A - \frac{1}{6n^2}\right) =$	In a
dunc d'apres le lhe Partie 3	orem r acry	adarme,	Line Une line
Partie (3) (1) on a $-x \in \mathbb{R}$ pour tout de plus $F(-x) = \int_{-x}^{2}$	m. £(+) dt		
don Fest paire.	$\frac{20}{5(-\omega)}$ (-dn)	= - du = - \(\begin{picture}(2n) & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(1) dn = F(n)
d'an Fest paire. In	U	(car fest	impaire)

(،

Correction Examen blanc 8	page 15/ ₁₇	Prof B.LOUKILIA
(D) on a d'apros la purhe	i @ quetroi 3 G)
$\forall n > 0 \qquad x - \frac{x}{6} \leq \frac{x}{3}$	GM 52	
= 4 t> 0 t - t	$\leq \xi(t) \leq \frac{2n}{2n} \rho_1$	$11 + \left(\frac{2x}{t}\right)$
(B) on a d'apres la purhe 4 x>0 x - \frac{\chi^3}{6} \leq 3 \text{4x>0 t - \frac{\chi^3}{6} \leq 2x \text{2x t - \frac{\chi^3}{6} \text{2x} t - \frac{\chi^3}{2} \text{2x} t - \c	$\frac{1}{6}$ $\int_{x}^{x} \frac{b}{b}$	$\frac{1}{1} = \int_{\mathcal{H}} \frac{1}{t^2} dt$
$\geq 0 \forall x > 0$ $\int_{\infty}^{2n} \left(\frac{1}{t} - \frac{1}{t}\right)^{2n} dt$	$-\frac{\xi^2}{6}$ $ 4\xi \leq F(x)$	$\leq \int_{\mathcal{X}} \frac{1}{t} dt$
Oupres' le colcul(a'verifi 6) Comme 720 - 22	er) on trouve -	22 + ln 2 < Fing < ln 2
(b) Comme \$ 2>0 - 212	$+hne \leq F(n) \leq hn$	
et 2 $\left(-\frac{n^2}{4}+1\right)$	me) = -ln 2 chonc	n=0+
	d'an	Fest continue en 0t.
de plus 7 n>0 - x	< Finj he	
et comme $\frac{2}{0+}\left(-\frac{2i}{4}\right)$ =	o alors li	F(21_F(0) = 0
donc Fest derrival	ole à droite de 0	et ona F1(0)=0
3 @ on a pour tout m>0 et comme fest donc 6(x	$x \le t \le 5$ strictement cross	In sante sur IR
So 61	(n) < (b) <	E(2n)
$= \int_{\gamma}^{2n} \frac{\mathcal{E}(u)}{\mathcal{E}^2}$	$ dt \leq \int_{x}^{2n} \frac{f'(t)}{f^2} $	$\frac{\mathcal{L}^{(2n)}}{\mathcal{L}^2}$ $dt \leq \int_{\pi}^{2n} \frac{\mathcal{L}^{(2n)}}{\mathcal{L}^2} dt$
=> B(a) [- 1	$\int_{a}^{2n} \leq F(x)$	$\leq \int_{\mathbb{R}} (2n) \left(-\frac{1}{t} \right)_{x}^{2x}$
= \frac{\xi_{\(1)}}{2^2}	Z< FINI <	<u>E(2n)</u> 2n

(4) Mølhode (1)

soit xt Jo, +00 [F(u) = \int \frac{2x}{t^2} \frac{g(t)}{t^2} \dt = \int \frac{g(t)}{t^2} \dt - \int \frac{g(t)}{t^2} \dt

soit (4) la fraction de france four Jo, +00 [par G(u) = \int \frac{g(t)}{t^2} \dt

ena t \longlerightarrow \frac{g(t)}{t^2} \dt

(cour feet continue four Jo, +00 [et t-) t ent continue

et non nul four Jo, +00 [

donc Gest dérivable sur) 0, +0 [

de plus U: > 1 plus 2 n est dérivable sur) 0, +0 [et 4 ()0,+0 [) C) 0,+0 [

et Gest dérivable sur) 0, +0 [donc Go V est dérivable sur) 0, +0 [

Correction Examen blanc 🖇 page 17/17 **Prof B.LOUKILIA** donc F = - G + GOW est dérivable au Jo, +00 (et ma V 2 €)0, +00 [F'(n) = -G'(n) + U'(n). G'(U(n)) $= -\frac{f(x)}{x^2} + 2 \cdot \frac{f(2n)}{(2n)^2} = -\frac{f(x)}{x^2} + \frac{f(2n)}{2x^2}$ $= \frac{f(2n) - 2f(n)}{2x^2}$ Meilhode 2) on a \x>0 F(n)= \(\frac{2x}{L^2} dt et les fonctions nu et nu 2x sont dérrivables sur Jo, 400[$et \, \text{sn a} \, F'(n) = 2 \frac{f(2n)}{(2n)^2} - \frac{f(n)}{2^2}$ $= \frac{f(2n) - if(n)}{9 n^2}$ (b) on a 4x>0 &/m/ = 1 donc f'est dérivable sur $\int_{0,+\infty}^{\infty} \left\{ \frac{1}{x^2+1} = \frac{x}{x^2+1} \right\} = \frac{x}{\sqrt{x^2+1}}$ donc 4 n >0 6"(n) <0 d'an b'at décraissante sur Do, 100 [Déduction: $\forall x > 0$ $\propto \langle 2n | donc | f'(2n) \langle f'(n) | donc | f'(2n) | donc |$ \$ f(2t) < g(t) = g(2t) < 2 f(t) $d \ln \forall n > 0 \quad f(2n) < 2 f(n)$ €) on a d'apres' ce qui précède +xx>0 f(211) <2f(11) dac 4x>0 f(2n)-2f(n) <0 Fin is

Lycée ibn toufail Oued-zem Mathématiques 2eme bac SM

Examens blancs 2021

Prof B.LOUKILIA

Bouazzaloukilia@gmail.com
Nr whatsapp 0674631401

	Exercice 1: (4 points)							
	Le plan complexe est rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$.							
0,5	On considere dans l'ensemble C l'équation (E) $z^2 - 4iz - 2 + 2i\sqrt{3} = 0$							
٥,٥	1) a) Vérifier que le nombre complexe $a = 1 + i(2 - \sqrt{3})$ est une solution de							
0,5	requation (E).							
0,5	b) Déduire b la deuxième solution de l'équation (E).							
0.5	2) a) Montrer que $a^2 = 4(2 - \sqrt{3})e^{i\frac{\pi}{6}}$.							
0.75	b) Ecrire le nombre a sous la forme trigonométrique.							
l	3) On considère les points A, B et C d'affixes respectifs a, b et $c = 2i + 2e^{i\frac{\pi}{2}}$							
	Soit (1) le cercle dont $[AB]$ est l'un de ses diamètres							
0,5	a) Determiner ω l'affixe du point Ω centre du cercle (Γ)							
0,5	b) Montrer que les points O et C appartiennent au cercle (Γ)							
0.75	c) Montrer que le nombre complexe $\frac{c-a}{c-b}$ est imaginaire pur.							
	(Ferencies 2 / /)							
	Exercice 3: (4 points)							
	Soit la fonction F définie sur l'intervalle [0; 1] par:							
	$F(x) = \frac{1}{x} - \frac{\ln(1+2x)}{2x^2} \; ; \; (x \in]0;1]) \text{et} F(0) = 1$							
	$x = 2x^2$, $(x \in]0,1]$ et $F(0) = 1$							
0.25	1) Soit x un élément de l'intervalle [0; 1], montrer que : $(\forall t \in [0; x])$; $\frac{1}{1+2x} \le \frac{1}{1+2t} \le 1$							
	2) Soit x un élément de l'intervalle]0; 1]							
0.5	a) Montrer que : $F(x) = \frac{2}{x^2} \int_0^x \frac{t}{1+2t} dt$							
0.75	b) Montrer que: $\frac{1}{1} \le F(x) \le 1$ on déduiss $x \in \mathbb{R}$							
	b) Montrer que : $\frac{1}{1+2x} \le F(x) \le 1$, en déduire que F est continue à droite au point 0.							
0.5	3) En utilisant une intégration par parties, montrer que :							
	$(\forall x \in [0; 1]); \int_0^x \frac{2t}{1+2t} dt = \frac{x^2}{1+2x} + 2 \int_0^x \left(\frac{t}{1+2t}\right)^2 dt$							
	4) Soit x un élément de l'intervalle]0; 1].							
0.5	a) Montrer que : $F'(x) = \frac{-4}{x^3} \int_0^x \left(\frac{t}{1+2t}\right)^2 dt$							
0.5	b) Montrer que -4 $= 5'(x)$ $= -4$							
0.5	b) Montrer que : $\frac{-4}{3} \le F'(x) \le \frac{1}{3(1+2x)^2}$ (on pourra utiliser le résultat de la question 1)							
	c) En appliquant le TAF à la fonction F sur $[0;x]$, montrer que							
0.75	$\frac{-4}{3} \le \frac{F(x) - F(0)}{x} \le \frac{-4}{3(1+2x)^2}$							
	$3 - x - 3(1+2x)^2$							
0.25	d) En déduire que la fonction Fast désirable à durit							
0.25	d) En déduire que la fonction F est dérivable à droite au point 0 et déterminer le nombre dérivé à droite de 0.							

Exercice 4 (8 points)

0,5

1

0,5

Partie (1)

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \ln \left(\frac{e^x + 1}{e^x} \right)$.

On appelle (C_f) la courbe représentative de la fonction numérique f dans un repère orthonormé (o, \vec{i}, \vec{j}) .

- 1- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- 0,5 2- Calculer f'(x) pour tout x de \mathbb{R} puis dresser le tableau de variations de f.
- 3-Montrer que la droite (D) d'équation y = -x est une asymptote oblique à la courbe 0,5 (C_f) puis préciser la position relative de (D) et (C_f) .
- 4 -a- Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle f que 0,5 l'on déterminera.
- 0,5 b-Déterminer $f^{-1}(x)$ pour tout $x \in J$.
- 5 Résoudre dans \mathbb{R} l'équation f(x) = x. 0,5
 - 6- Construire dans le même repère (o, \vec{i}, \vec{j}) la droite (D) et les courbes (C_f) et $(C_{f^{-1}})$ en précisant la tangente à la courbe (C_f) au point d'abscisses $0.(C_{f^{-1}})$ est la courbe représentative de f^{-1}).

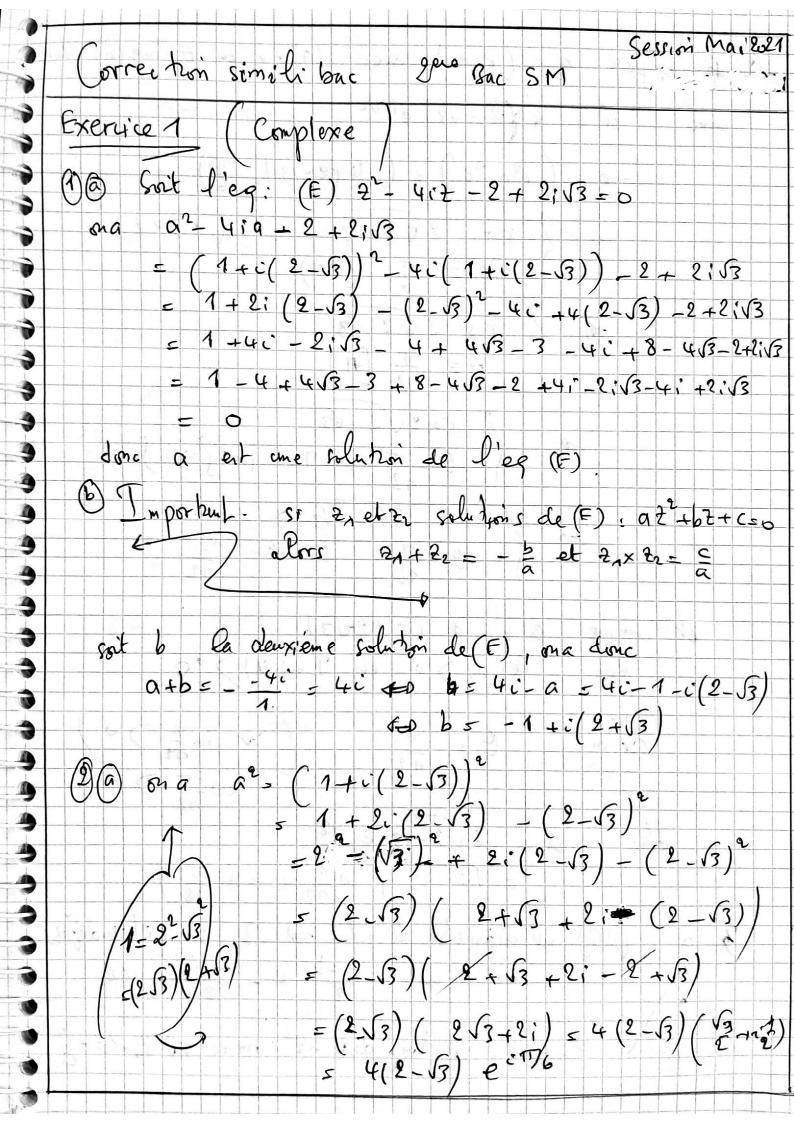
Partie ②

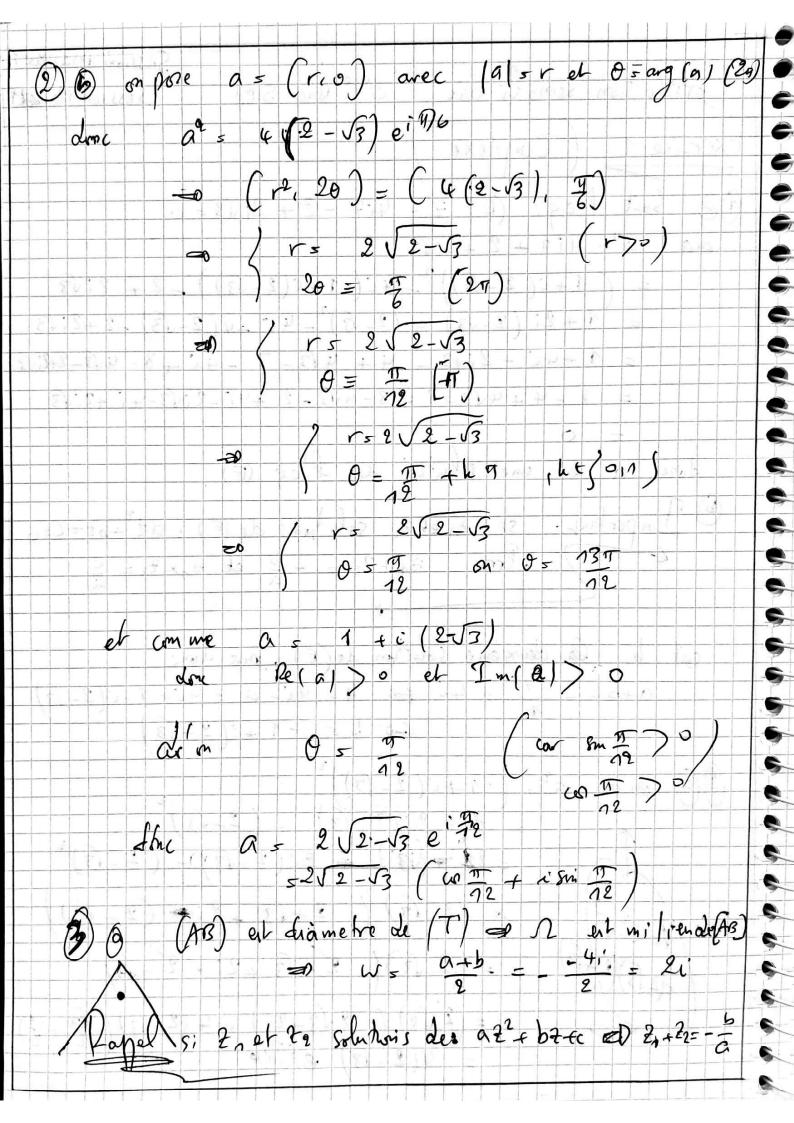
Soit $(u_n)_n$ la suite numérique définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \text{ pour tout } n \text{ de } \mathbb{N} \end{cases}$

- 0,5 1- Montrer que : $\forall n \in \mathbb{N}$; $u_n > 0$.
- 2-a-Montrer que : $\forall x > 0$; $|f'(x)| \le \frac{1}{2}$. 0,5
- b- En déduire que : $\forall n \in \mathbb{N}$; $\left| u_{n+1} \ln \left(\frac{1+\sqrt{5}}{2} \right) \right| \leq \frac{1}{2} \left| u_n \ln \left(\frac{1+\sqrt{5}}{2} \right) \right|$. 0,5
- c- Montrer que $(u_n)_n$ est convergente et déterminer sa limite. 0,75

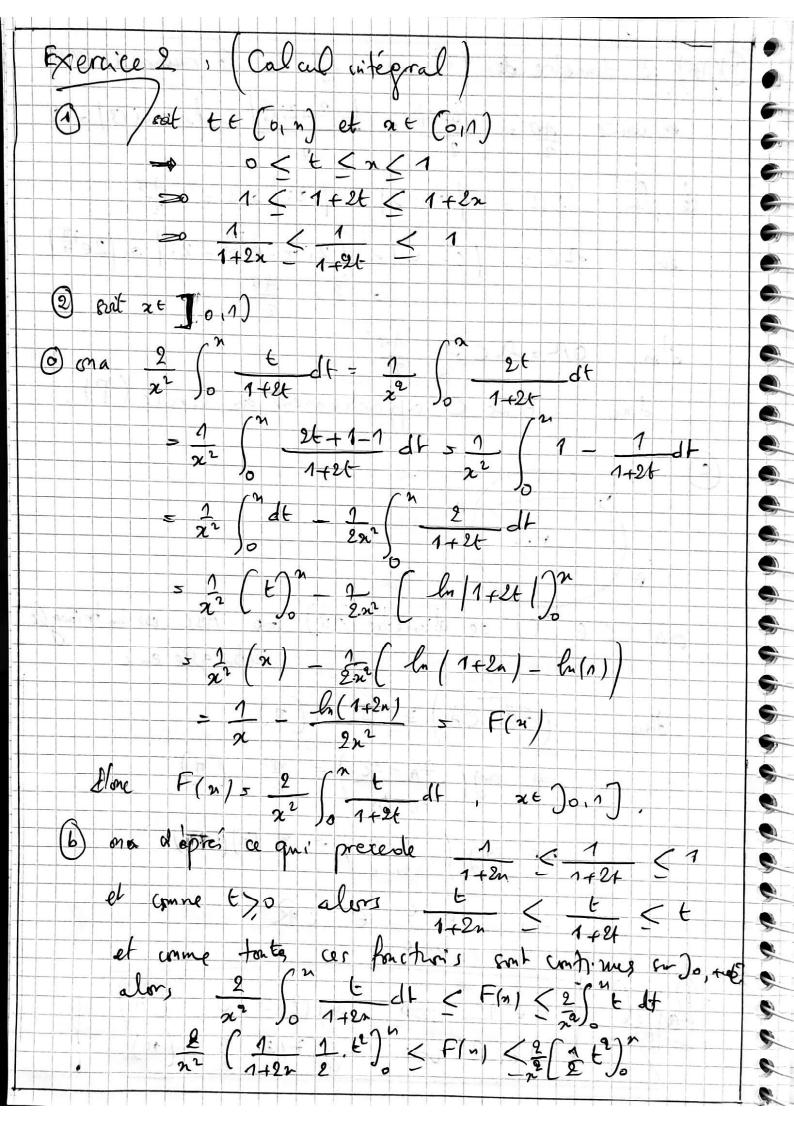
Partie (3)

- 0,75 1- Montrer que: $\forall t > 0$; $t - \frac{t^2}{2} \le \ln(1+t) \le t$.
- 2- En déduire que : $\forall x \in \mathbb{R}$; $e^{-x} \frac{e^{-2x}}{2} \le f(x) \le e^{-x}$. 0,5
 - 3- Soit A l'aire du domaine plan limité par (C_f) , l'axe des abscisses, l'axe

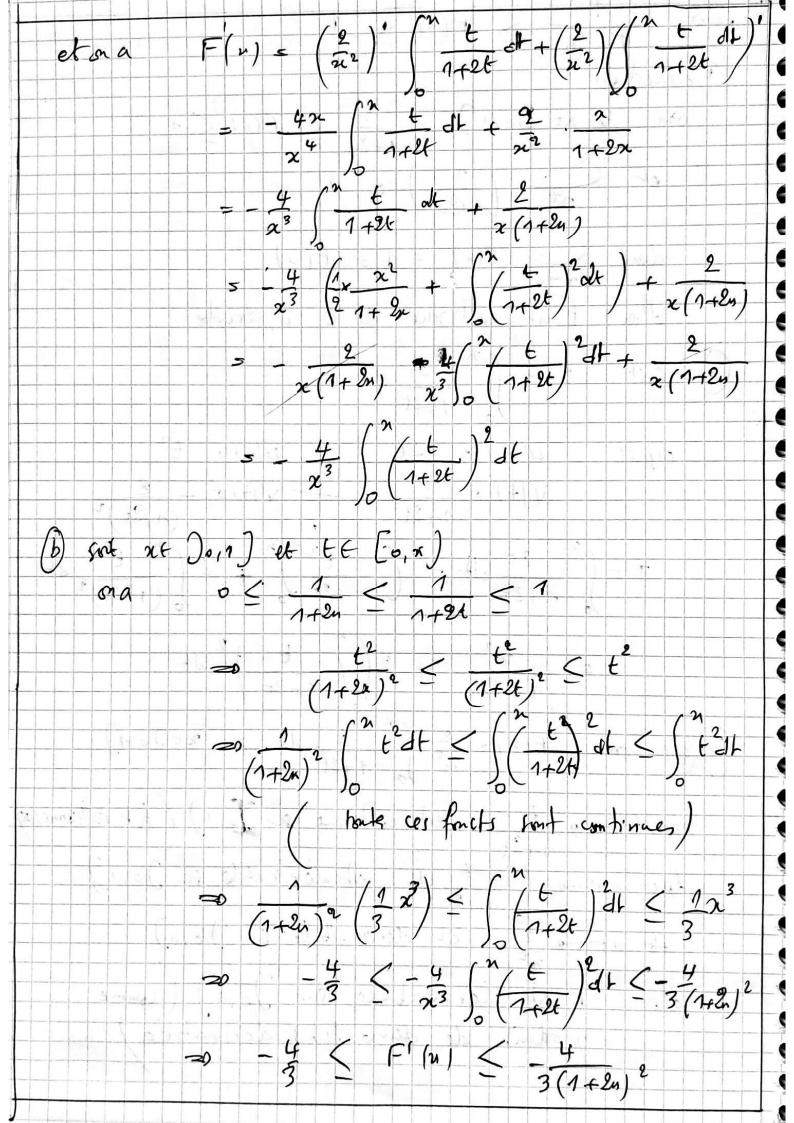

Exercice 5: (4 points) Les trois parties (I), (II) et (III) sont indépendantes. 0,25 1- Montrer que le nombre 673 est premier. 2- Montrer que : $2^{672} \equiv 1 [2019]$ (remarquer que : $2019 = 673 \times 3$). 0,5 3- Quelle est le reste de la division euclidienne de 2²⁰¹⁸ par 2019. 0.25 4- En déduire que les nombres 2019 et $2^{2018} - 2019^{2019}$ sont premiers entre eux. 0,5 Dans $\mathbb{Z}^* \times \mathbb{Z}^*$, on considère l'équation : (E): $x^2 + y = xy$. II. Soit $(x,y) \in \mathbb{Z}^* \times \mathbb{Z}^*$; soit d le plus grand diviseur commun de x et y. Soit $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$ tel que: x = ad et y = bd. 0,5 1- Montrer que si (x, y) est une solution de (E), alors a divise b. 0,5 2- En déduire que la seule solution de l'équation (E) dans $\mathbb{Z}^* \times \mathbb{Z}^*$ est (2,4). Soit b un entier naturel. 1- Déterminer les restes possibles dans la division euclidienne de b^4 par 10. 0, 5 1- En déduire que $b^4 \equiv 1 [10]$ si et seulement si b est premier avec 10. 0.5 0.5 2- Déterminer les deux derniers chiffres de 67⁴².

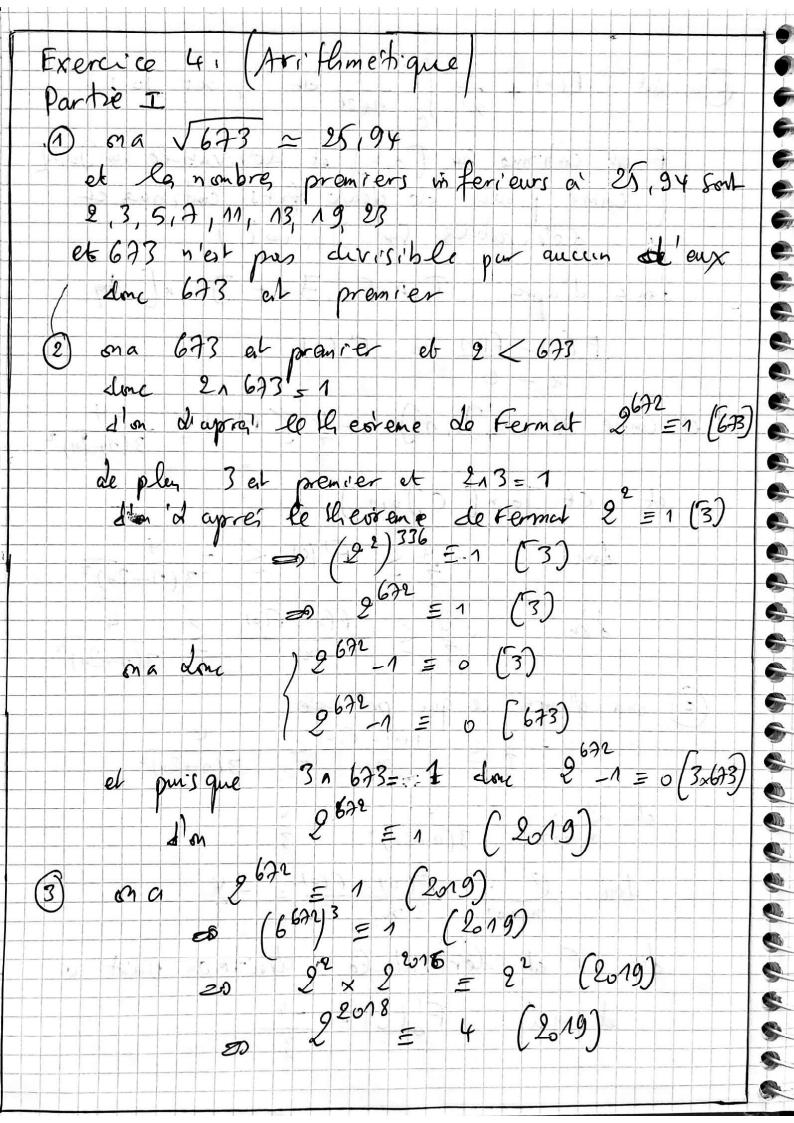

des ordonnées et la droite d'équation x=1.

Montrer que

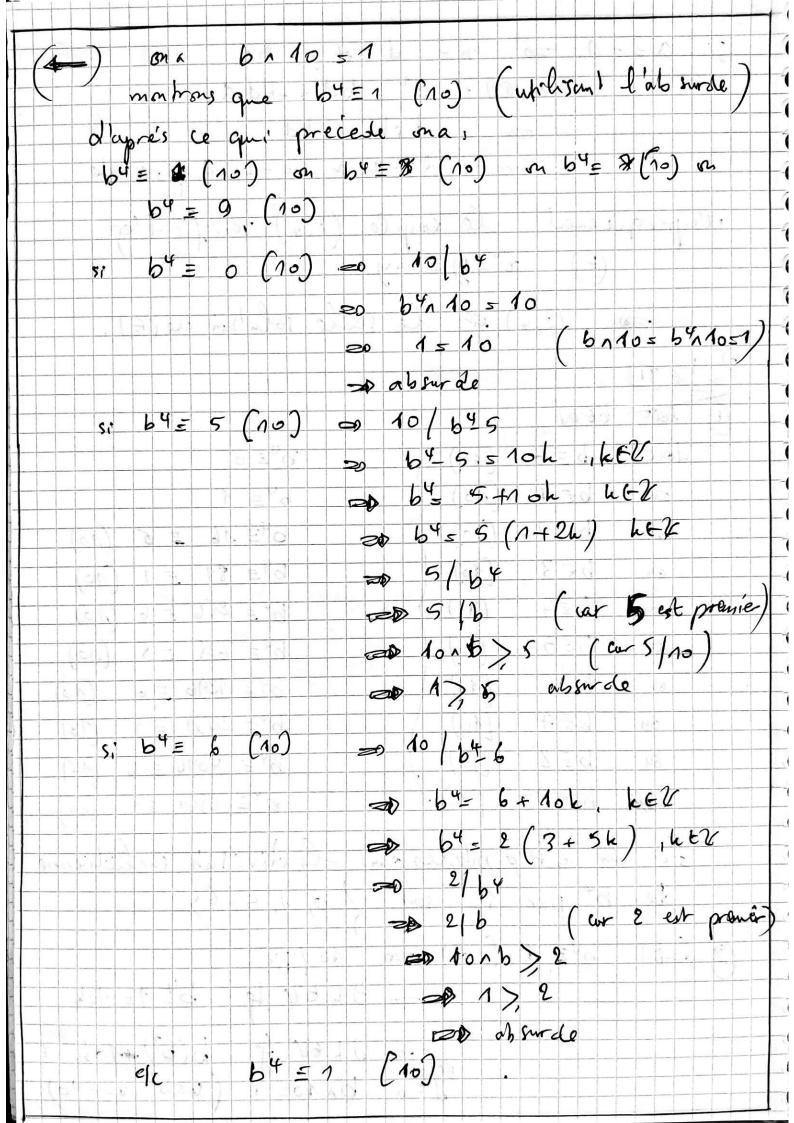

 $\frac{1}{4e^2}\Big[\big(3e-1\big)\big(e-1\big)\Big] \le A \le \left(\frac{e-1}{e}\right).$

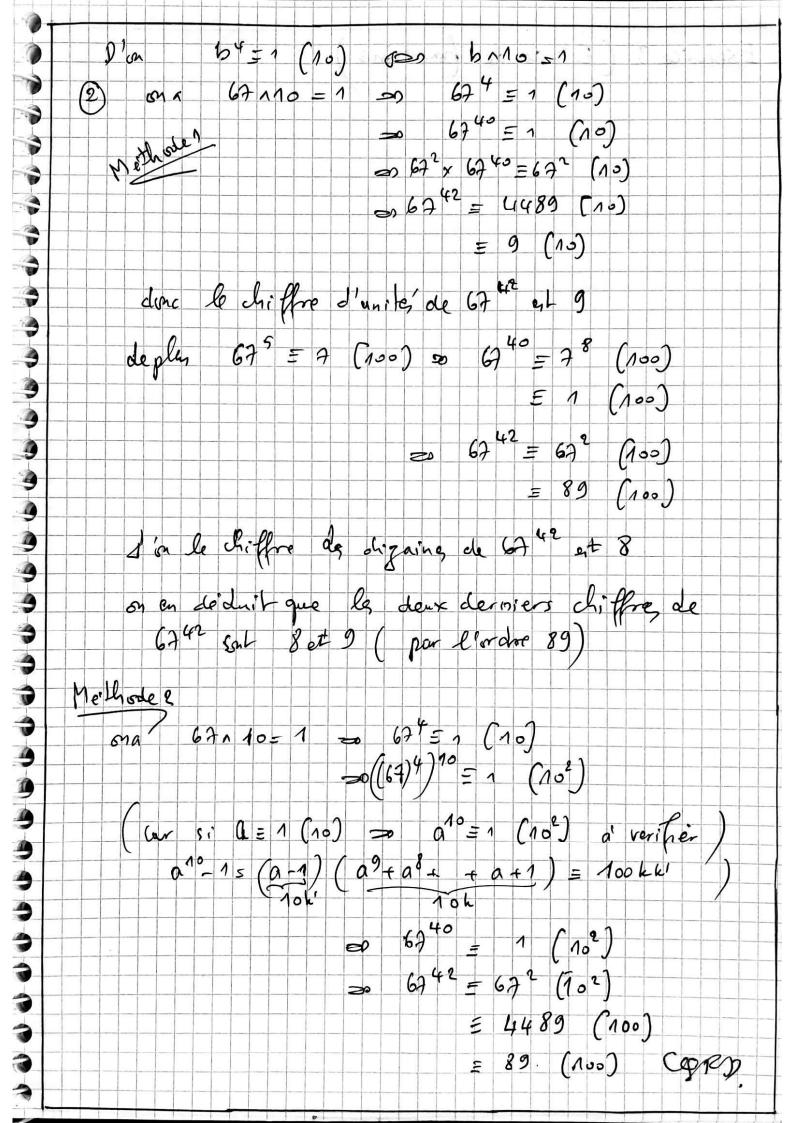
Fin du sujet.



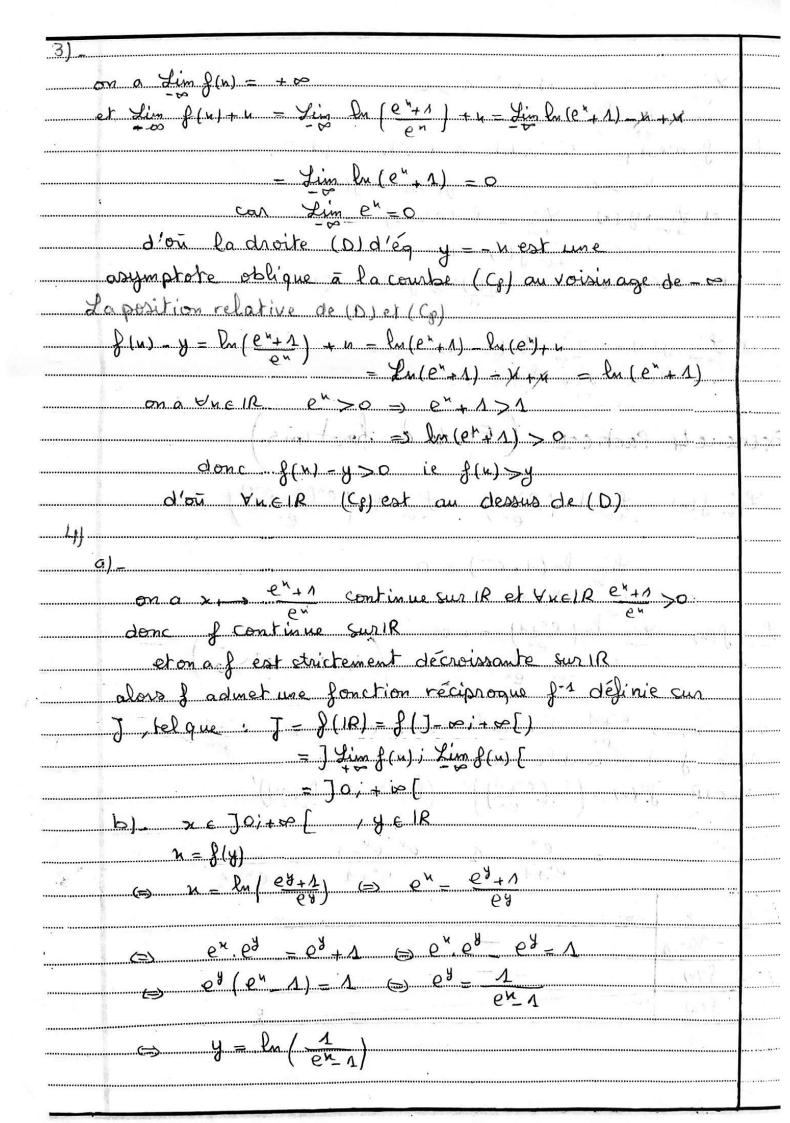

(3)(AB) est diametre de (T) =0 AB est le rayon de (T) et comme $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1-2+2i\sqrt{3}}{2}$ = $\frac{1-2+2i\sqrt{3}}{2}$ = 2 de ples 01 5 / 2: / 52 = 43 DC = /c- W/s /2:42e= =-2:/ = (2e==) OP = AB Inc 0 de Caparhennent an corcle (T) de d'ame tre (AB) so ABC est un triangle rechingle en c (CR, CA) = T (1) $=0 \quad ang\left(\frac{2\pi-2c}{2\pi-2a}\right)=\frac{2\pi}{2}$ =0 0-C E iR $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ and $z \in \mathbb{R}^{+}$ are $z \in \mathbb{R}^{+$

 $\frac{1}{1+2n} \leq F(n) \leq 1$ Deauction V 2€ Do,1 D 1 S F(91 S 1 donc 2: F(n) = 1 = F(0) ella Fat continue en o a draite. onpore $F(n) = \frac{2}{x^2} \int_{0}^{\pi} \frac{d}{1+2t} dt, \quad x \in J_{on}$ ona trong tel est continue sur Jo, 1) (fit rationnelle) nto (2 t de est de rivable sur)0,1) d'an Fest dérivable sur Joss) (comme produit de deux fets dérivables)

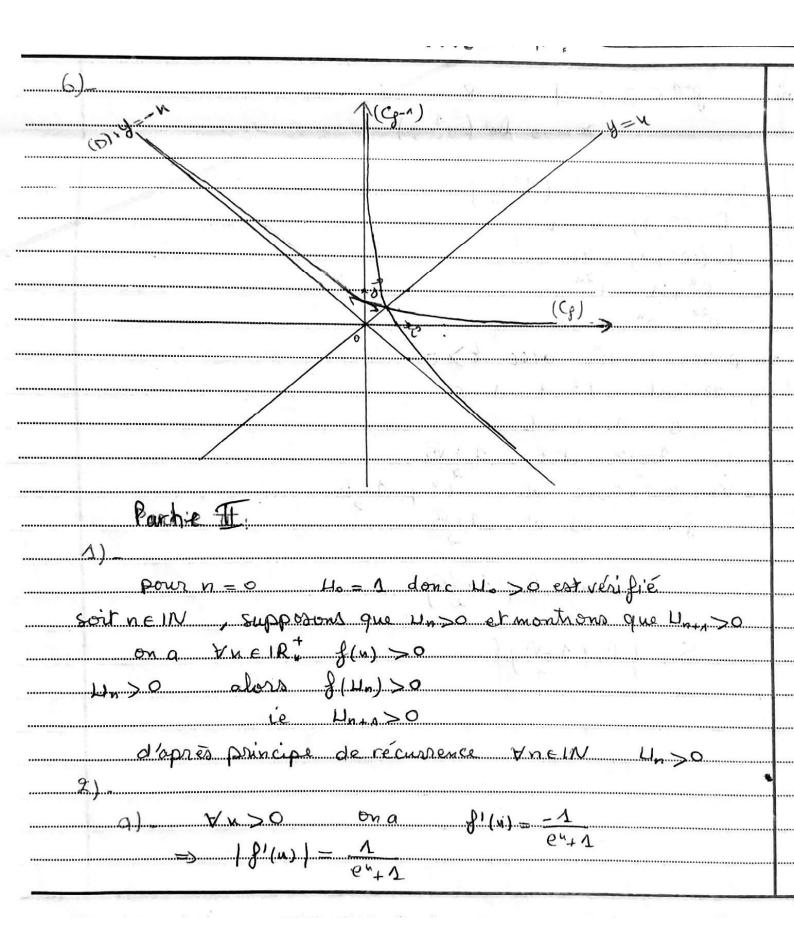

Soit $F(n) = \frac{2}{x^2} \int_{0}^{x} \frac{t}{1+2t} dt$, $x \in [0,1]$ Fat continue sur [o,n] et doirivable sur Join[(come produit de deux fets continue et devivables sur Jo, 400 () donc d'après M.A.F., JCE Do, x[17 $\frac{F(n)-F(o)}{2c-o}> F'(c)$ et conne \(\chi \time \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\fra et CE Jo, n [C Jo, n] dru -45 F1 (c) 5 -4 3 (n-2n)2 den - 4 - 4 - 3 (1-124)2 (e) on a d'après ce qui précède $\frac{4}{3} = \frac{4}{n} = \frac{4}{3} \left(\frac{1}{n} + \frac{2n}{n} \right)^{\frac{n}{2}}$ et 2. 4 n-107 3(1+2n) 4 3 don P. F(4)-F(0) 5 -4 d'en Fet dérivable à draite au paint o et ora $F_{d}(0) = \frac{-4}{3}$

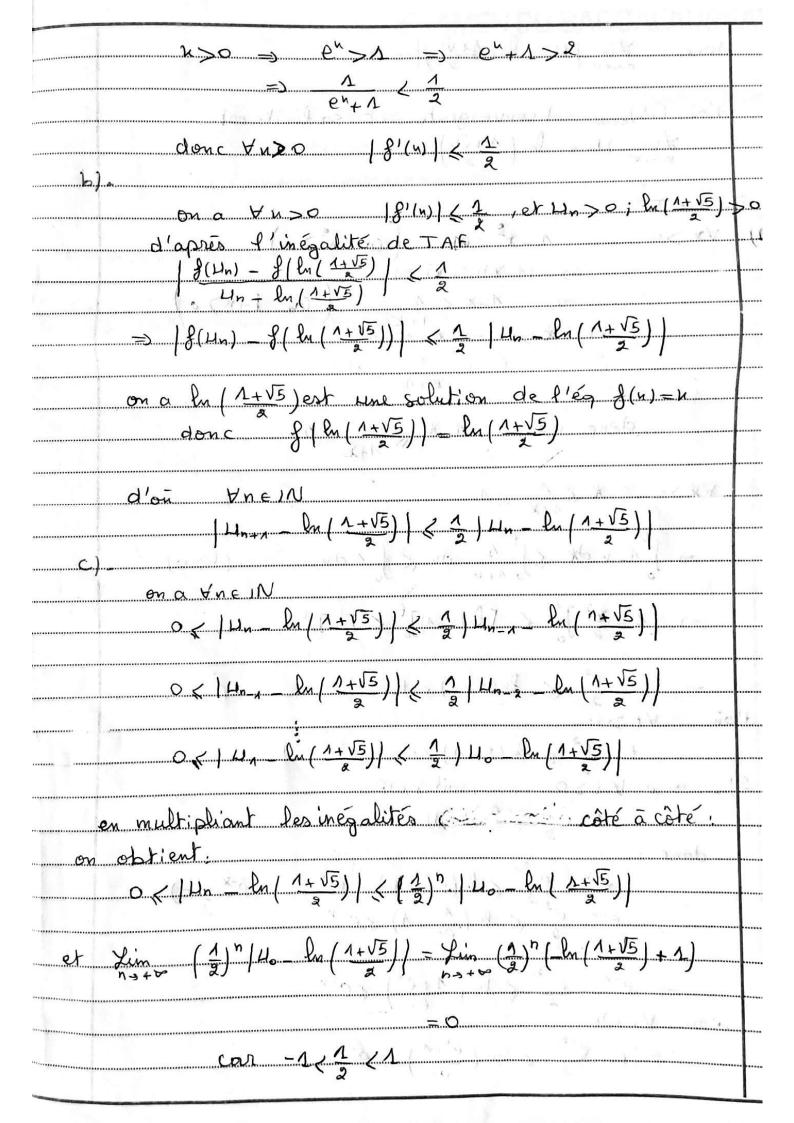


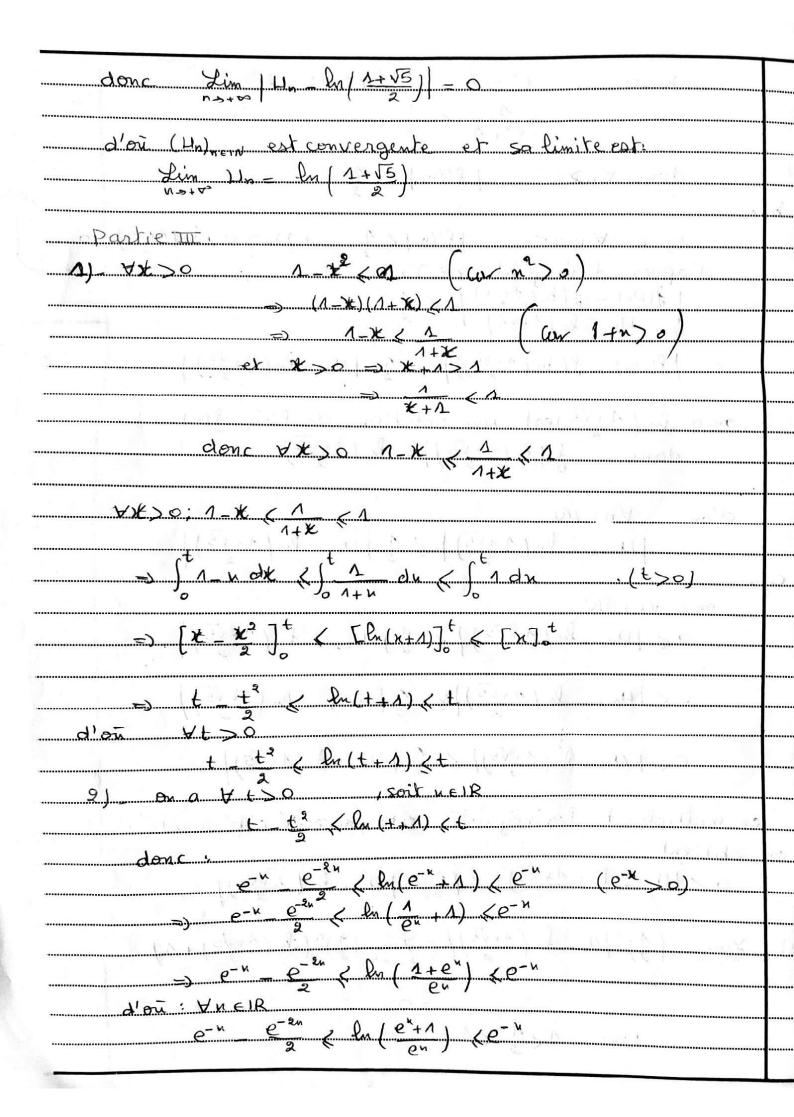
d'en 4 et le refe de la division enchédienne de 22018 pres 2019. m pose d= 2019 1 (2º018 - 2019) 4 | 2019 | 2019 | 2019 | 2018 2019 4/2019 4 2 2019 4 2019 2019 1/2019 2018 2019 h, LEV 1/2018 2018 1 4/ 2019 2 2018 _ 2019 h 41 2019 Cur. 2 = 4 (20103) => d/ 41 2019 2 1 2019 = 1 - 2 1 2019 - 1 comme = 4 n 2019 =1 d/1 = d s 1 (w d > d 2019 et 2 2018 2 2019 Sal premiers entre eux



ns-detysba 51 = (E) = d1 + bd = -bd.d d pb 5 - bd 3 d = -2 d b = -2 apovs; 66 le souple (2,4) verifie l'eg 2+4 = 24 (2,4) est la seule solution de (F) soit bew | b = 0 b4 € 0 (10) b=1 (10) 643 16 3 6 632 (10) 69= 81 = 1 b=3 (10) (10) 64 = 256 = 6 554 (10) (10) 20 64= 625 = 5 (No) 6=5 (Ao) by= 1296 = 6 (ns) b= 6 [10] b4= 2401 = 1 637 (10) 64= 4096 = 6 (75) 658 (90) 134 64 = 6561 =1 (no) b=9 (10) la atéposibles dans la división enchichienne par 10 sont 20, 1, 5, 65 by = 1 (10) =0 10/by, Jh & 2 fp 64 1 = 10h Segont by 10=1 (usb3, vs-10)






	1 (e + 1)	= Lim	.0.1e	w/ /	n-h1 1	
	(e +12)	= Jum	0. / 6		U 11	No.
0		4.00	-cm	en		
	\	4.1			······································	
= 2 m	ln (1+e-)	') = 0				
Lim e	- u = 0	i basi sun	71.5			
Zun un	= +1 =	. + 0>			ν	3.03.6
car y	lim 1	_ + 10	(Xx	CAL	e^>0/	010
uvi(20. :	Styl Suyare	NAPOSY 6	4 4180		Tomba i	<u> </u>
<u>e71</u>	dénivab	le sur 19	Let V	HEIR	e"+1"	> 0
t dériva	ble sur	1R.	16 20 1	<u></u>		
g'(u) = 1	lu (eh+1)) = (ln (e"+1)_	lu (e'	1)'	
,		31	1 6 4	512	And Tong	1.5
:=	e" -	1 - ex	-eu-1		-41/	A
	e*+1	3	e_+7	14.465	e"+1	
-00	V 2			+4	<u> </u>	
	1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ 0, ×0, ×	. A .	10 m	°6g, ×3	je sa
	A	- 50	-1 -1	- 1 h	48/180	
+0	1 37 (3				Ş	
			1	A	J = E	
			13/ =			
	e"+1 + deriva f'(u) = ($e^{\frac{n}{4}} denivab$ $e^{\frac{n}{4}} denivable sun$ $f'(n) = \left(ln \left(\frac{e^{n} + 1}{e^{n}} \right) \right)$ $= \frac{e^{x}}{e^{x} + 1}$	con $\frac{41}{e^n} = +\infty$ con $\frac{1}{e^n} = +\infty$ $\frac{e^n+1}{e^n}$ dérivable sur IP $\frac{e^n+1}{e^n}$ dérivable sur IP $\frac{e^n+1}{e^n} = \left(\frac{e^n+1}{e^n}\right)^n = \left(\frac{e^n}{e^n}\right)^n = e^n$	con Lim $\frac{1}{e^n} = +\infty$ $\frac{e^n + 1}{e^n}$ dérivable sur IR. $\frac{e^n + 1}{e^n}$ $\frac{e^n + 1}{e^n}$ $\frac{e^n + 1}{e^n}$ $\frac{e^n + 1}{e^n + 1}$ $\frac{e^n + 1}{e^n + 1}$	con Lim 1 = + ∞ Con Lim 1 = + ∞ $e^{n}+1$ dérivable sur IR et $\forall n \in IR$ e^{n} $e^{n}+1$ dérivable sur IR. e^{n} $e^{n}+1$ $e^{n}+1$ $e^{n}+1$ $e^{n}+1$	con $\lim_{e \to 1} \frac{1}{e^n} = + \infty$

d'où f-1: Jo;+~[]1R	
d'où f^{-1} : $J_{0,+\infty}[$ $\longrightarrow \mathbb{R}$ $\left(\frac{1}{e^{\nu}-1}\right)$	·
5)	100000000000000000000000000000000000000
$f(u) = u \longrightarrow lu\left(\frac{e^u + n}{e^u}\right) = u$	
(=) Pn(e4,1) L = 1	
€ ln(e"+1) = 24	·
= ex, 1 = e2n	
() e ² n - 0 1 - 0	
on pose t=e" over t>o	
l'ég devient t2 t 1-0	
A - A - 1 - 5	
$t_{1} = 1 - \sqrt{5} \text{or} t_{2} = 1 + \sqrt{5}$ $0 = 0 \text{or} \text{or} $	
on a Vneir ex >0 alors ex + 1	- √5
donc f(n) - v (-) on - 1+ V5	2 J. 3-1209
٠	10
€ N - ln (1+ √5)	= .41 =
	P. Americanii Wilaw Tio
S - 1 Dm (1+V5)((N) I SI DAY ONE
	AUF LZAMA OZII
0 <	
	1 36 1 1 3 1
*	
& 1: VM	
	10 · O × V — 11 1
<u> </u>	

$3) \qquad \forall n \in \mathbb{R} \qquad e^{-n} \qquad e^{-2n} < \beta(n) < e^{-n}$	
3)	_
	<u> </u>
on a. A = f f(i) dy: 1 m 1 A 2 E E 1 1 5 1 7 1 7 1 9 1 7 0	dy est
7°	LEAS BALL
on a Yneir e- " e- 24 (f(m) < 0- 4)	المالية المدنية
2 100 650 100 650	
=> \(\int_{e^{-u}}^{1} \ e^{-u} \) du \(\int_{e^{-u}}^{1} \ \ \ \ \left(u) \) du \(\int_{e^{-u}}^{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2) 0 10 10 10 10 10 10 10 10 10 10 10 10 1	A AVE
======================================	ASEN.
4 Jo James 7 3/ 14/18/11 03	-016
$\Rightarrow e^{-\Lambda}, e^{-2}, \Lambda, \Lambda, \Lambda, \Lambda, \Lambda$	S.J. N. 12
$\Rightarrow e^{-1} + e^{-2} + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	and the same of th
-4e-1+e-2+b-1	2 82 18
= 4e-1+e-2+4-1 (A (1 1)	0) 6)
	1817 = 7
-40+1+3e2 (AKER-1)	2
(1 (1 (1 (1 (1 (1 (1 (1 (1 (1	_ 1 2 1 7 69
=) 1 (3e(e-1)-(e-1) (A < e-1)	2646
1810 2011	0946
He2'	
d'où	G - A
1 [130_1)/0 A)]/A (/(e-1)	
$\frac{1}{4e^2}\left[\frac{(3e-1)(e-1)}{A}\right] < A < \left(\frac{e-1}{e}\right)$	
200 2 7 2019 1 - 1 2019	<u>(</u>

...

••

. . .